Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from collections.abc import Iterator | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import re | |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer | |
model_id = "google/gemma-3-12b-it" | |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") | |
model = Gemma3ForConditionalGeneration.from_pretrained( | |
model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager" | |
) | |
import cv2 | |
from PIL import Image | |
import numpy as np | |
import tempfile | |
def downsample_video(video_path): | |
vidcap = cv2.VideoCapture(video_path) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_interval = int(fps / 3) | |
frames = [] | |
for i in range(0, total_frames, frame_interval): | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
def process_new_user_message(message: dict) -> list[dict]: | |
if message["files"]: | |
if "<image>" in message["text"]: | |
content = [] | |
print("message[files]", message["files"]) | |
parts = re.split(r'(<image>)', message["text"]) | |
image_index = 0 | |
print("parts", parts) | |
for part in parts: | |
print("part", part) | |
if part == "<image>": | |
content.append({"type": "image", "url": message["files"][image_index]}) | |
print("file", message["files"][image_index]) | |
image_index += 1 | |
elif part.strip(): | |
content.append({"type": "text", "text": part.strip()}) | |
elif isinstance(part, str) and not part == "<image>": | |
content.append({"type": "text", "text": part}) | |
print(content) | |
return content | |
elif message["files"][0].endswith(".mp4"): | |
content = [] | |
video = message["files"].pop(0) | |
frames = downsample_video(video) | |
for frame in frames: | |
pil_image, timestamp = frame | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file: | |
pil_image.save(temp_file.name) | |
content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
content.append({"type": "image", "url": temp_file.name}) | |
print(content) | |
return content | |
else: | |
# non interleaved images | |
return [{"type": "text", "text": message["text"]}, *[{"type": "image", "url": path} for path in message["files"]]] | |
else: | |
return [{"type": "text", "text": message["text"]}] | |
def process_history(history: list[dict]) -> list[dict]: | |
messages = [] | |
current_user_content: list[dict] = [] | |
for item in history: | |
if item["role"] == "assistant": | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
current_user_content = [] | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
else: | |
content = item["content"] | |
if isinstance(content, str): | |
current_user_content.append({"type": "text", "text": content}) | |
else: | |
current_user_content.append({"type": "image", "url": content[0]}) | |
return messages | |
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]: | |
messages = [] | |
if system_prompt: | |
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) | |
messages.extend(process_history(history)) | |
messages.append({"role": "user", "content": process_new_user_message(message)}) | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(device=model.device, dtype=torch.bfloat16) | |
streamer = TextIteratorStreamer(processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
output = "" | |
for delta in streamer: | |
output += delta | |
yield output | |
examples = [ | |
[ | |
{ | |
"text": "Preciso estar no Japão por 10 dias, indo para Tóquio, Kyoto e Osaka. Pense no número de atrações em cada uma delas e aloque o número de dias para cada cidade. Faça recomendações de transporte público.", | |
"files": [], | |
} | |
], | |
[ | |
{ | |
"text": "Escreva o código matplotlib para gerar o mesmo gráfico de barras.", | |
"files": ["assets/sample-images/barchart.png"], | |
} | |
], | |
[ | |
{ | |
"text": "O que há de estranho neste vídeo?", | |
"files": ["assets/sample-images/tmp.mp4"], | |
} | |
], | |
[ | |
{ | |
"text": "Eu já tenho este suplemento <image> e quero comprar este outro <image>. Há algum aviso que eu deva saber?", | |
"files": ["assets/sample-images/pill1.png", "assets/sample-images/pill2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Escreva um poema inspirado nos elementos visuais das imagens.", | |
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Componha uma pequena peça musical inspirada nos elementos visuais das imagens.", | |
"files": [ | |
"assets/sample-images/07-1.png", | |
"assets/sample-images/07-2.png", | |
"assets/sample-images/07-3.png", | |
"assets/sample-images/07-4.png", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "Escreva uma história curta sobre o que pode ter acontecido nesta casa.", | |
"files": ["assets/sample-images/08.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Crie uma história curta baseada na sequência de imagens.", | |
"files": [ | |
"assets/sample-images/09-1.png", | |
"assets/sample-images/09-2.png", | |
"assets/sample-images/09-3.png", | |
"assets/sample-images/09-4.png", | |
"assets/sample-images/09-5.png", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "Descreva essa imagem.", | |
"files": ["assets/sample-images/PIX.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Leia o texto na imagem.", | |
"files": ["assets/additional-examples/1.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Quando este bilhete foi datado e quanto custou?", | |
"files": ["assets/additional-examples/2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Leia o texto na imagem em markdown.", | |
"files": ["assets/additional-examples/3.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Avalie esta integral.", | |
"files": ["assets/additional-examples/4.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Legende esta imagem.", | |
"files": ["assets/sample-images/01.png"], | |
} | |
], | |
[ | |
{ | |
"text": "O que diz a placa?", | |
"files": ["assets/sample-images/02.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Compare e contraste as duas imagens.", | |
"files": ["assets/sample-images/03.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Liste todos os objetos na imagem e suas cores.", | |
"files": ["assets/sample-images/04.png"], | |
} | |
], | |
[ | |
{ | |
"text": "Descreva a atmosfera da cena.", | |
"files": ["assets/sample-images/05.png"], | |
} | |
], | |
] | |
demo = gr.ChatInterface( | |
fn=run, | |
type="messages", | |
textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple"), | |
multimodal=True, | |
additional_inputs=[ | |
gr.Textbox(label="System Prompt", value="Você é um assistente, responder em ptbr."), | |
gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700), | |
], | |
stop_btn=False, | |
title="Gemma 3 12B PT-BR", | |
description="<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' /><br>This is a demo of Gemma 3 12B it, a vision language model with outstanding performance on a wide range of tasks. You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input.", | |
examples=examples, | |
run_examples_on_click=False, | |
cache_examples=False, | |
css_paths="style.css", | |
delete_cache=(1800, 1800), | |
) | |
if __name__ == "__main__": | |
demo.launch() |