Bruno's picture
Update app.py
5aab8fc verified
#!/usr/bin/env python
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
import re
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
model_id = "google/gemma-3-12b-it"
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)
import cv2
from PIL import Image
import numpy as np
import tempfile
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = int(fps / 3)
frames = []
for i in range(0, total_frames, frame_interval):
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def process_new_user_message(message: dict) -> list[dict]:
if message["files"]:
if "<image>" in message["text"]:
content = []
print("message[files]", message["files"])
parts = re.split(r'(<image>)', message["text"])
image_index = 0
print("parts", parts)
for part in parts:
print("part", part)
if part == "<image>":
content.append({"type": "image", "url": message["files"][image_index]})
print("file", message["files"][image_index])
image_index += 1
elif part.strip():
content.append({"type": "text", "text": part.strip()})
elif isinstance(part, str) and not part == "<image>":
content.append({"type": "text", "text": part})
print(content)
return content
elif message["files"][0].endswith(".mp4"):
content = []
video = message["files"].pop(0)
frames = downsample_video(video)
for frame in frames:
pil_image, timestamp = frame
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
pil_image.save(temp_file.name)
content.append({"type": "text", "text": f"Frame {timestamp}:"})
content.append({"type": "image", "url": temp_file.name})
print(content)
return content
else:
# non interleaved images
return [{"type": "text", "text": message["text"]}, *[{"type": "image", "url": path} for path in message["files"]]]
else:
return [{"type": "text", "text": message["text"]}]
def process_history(history: list[dict]) -> list[dict]:
messages = []
current_user_content: list[dict] = []
for item in history:
if item["role"] == "assistant":
if current_user_content:
messages.append({"role": "user", "content": current_user_content})
current_user_content = []
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
else:
content = item["content"]
if isinstance(content, str):
current_user_content.append({"type": "text", "text": content})
else:
current_user_content.append({"type": "image", "url": content[0]})
return messages
@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
messages = []
if system_prompt:
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
messages.extend(process_history(history))
messages.append({"role": "user", "content": process_new_user_message(message)})
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for delta in streamer:
output += delta
yield output
examples = [
[
{
"text": "Preciso estar no Japão por 10 dias, indo para Tóquio, Kyoto e Osaka. Pense no número de atrações em cada uma delas e aloque o número de dias para cada cidade. Faça recomendações de transporte público.",
"files": [],
}
],
[
{
"text": "Escreva o código matplotlib para gerar o mesmo gráfico de barras.",
"files": ["assets/sample-images/barchart.png"],
}
],
[
{
"text": "O que há de estranho neste vídeo?",
"files": ["assets/sample-images/tmp.mp4"],
}
],
[
{
"text": "Eu já tenho este suplemento <image> e quero comprar este outro <image>. Há algum aviso que eu deva saber?",
"files": ["assets/sample-images/pill1.png", "assets/sample-images/pill2.png"],
}
],
[
{
"text": "Escreva um poema inspirado nos elementos visuais das imagens.",
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
}
],
[
{
"text": "Componha uma pequena peça musical inspirada nos elementos visuais das imagens.",
"files": [
"assets/sample-images/07-1.png",
"assets/sample-images/07-2.png",
"assets/sample-images/07-3.png",
"assets/sample-images/07-4.png",
],
}
],
[
{
"text": "Escreva uma história curta sobre o que pode ter acontecido nesta casa.",
"files": ["assets/sample-images/08.png"],
}
],
[
{
"text": "Crie uma história curta baseada na sequência de imagens.",
"files": [
"assets/sample-images/09-1.png",
"assets/sample-images/09-2.png",
"assets/sample-images/09-3.png",
"assets/sample-images/09-4.png",
"assets/sample-images/09-5.png",
],
}
],
[
{
"text": "Descreva essa imagem.",
"files": ["assets/sample-images/PIX.png"],
}
],
[
{
"text": "Leia o texto na imagem.",
"files": ["assets/additional-examples/1.png"],
}
],
[
{
"text": "Quando este bilhete foi datado e quanto custou?",
"files": ["assets/additional-examples/2.png"],
}
],
[
{
"text": "Leia o texto na imagem em markdown.",
"files": ["assets/additional-examples/3.png"],
}
],
[
{
"text": "Avalie esta integral.",
"files": ["assets/additional-examples/4.png"],
}
],
[
{
"text": "Legende esta imagem.",
"files": ["assets/sample-images/01.png"],
}
],
[
{
"text": "O que diz a placa?",
"files": ["assets/sample-images/02.png"],
}
],
[
{
"text": "Compare e contraste as duas imagens.",
"files": ["assets/sample-images/03.png"],
}
],
[
{
"text": "Liste todos os objetos na imagem e suas cores.",
"files": ["assets/sample-images/04.png"],
}
],
[
{
"text": "Descreva a atmosfera da cena.",
"files": ["assets/sample-images/05.png"],
}
],
]
demo = gr.ChatInterface(
fn=run,
type="messages",
textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple"),
multimodal=True,
additional_inputs=[
gr.Textbox(label="System Prompt", value="Você é um assistente, responder em ptbr."),
gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700),
],
stop_btn=False,
title="Gemma 3 12B PT-BR",
description="<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' /><br>This is a demo of Gemma 3 12B it, a vision language model with outstanding performance on a wide range of tasks. You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input.",
examples=examples,
run_examples_on_click=False,
cache_examples=False,
css_paths="style.css",
delete_cache=(1800, 1800),
)
if __name__ == "__main__":
demo.launch()