File size: 9,234 Bytes
faa4f79
 
 
 
 
 
 
 
5aab8fc
faa4f79
 
a8a3b71
2d73e21
faa4f79
 
 
 
5aab8fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faa4f79
5aab8fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faa4f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aab8fc
faa4f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aab8fc
2fdc223
faa4f79
 
5aab8fc
 
faa4f79
 
 
 
5aab8fc
 
faa4f79
 
 
 
5aab8fc
 
faa4f79
 
 
 
5aab8fc
 
faa4f79
 
 
 
0fb1632
faa4f79
 
 
 
 
0fb1632
faa4f79
 
 
2fdc223
 
 
 
faa4f79
 
 
0fb1632
faa4f79
 
 
 
 
5aab8fc
faa4f79
 
 
2fdc223
 
 
 
 
faa4f79
 
 
5aab8fc
 
faa4f79
 
 
 
0fb1632
faa4f79
 
 
 
 
0fb1632
faa4f79
 
 
 
 
0fb1632
faa4f79
 
 
 
 
0fb1632
faa4f79
 
 
5aab8fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fdc223
 
5aab8fc
faa4f79
 
 
5aab8fc
faa4f79
 
5aab8fc
 
faa4f79
 
5aab8fc
 
faa4f79
 
 
 
 
 
 
 
5aab8fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python

from collections.abc import Iterator
from threading import Thread

import gradio as gr
import spaces
import torch
import re
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer

model_id = "google/gemma-3-12b-it"
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
)

import cv2
from PIL import Image
import numpy as np
import tempfile

def downsample_video(video_path):
    vidcap = cv2.VideoCapture(video_path)
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    frame_interval = int(fps / 3) 
    frames = []

    for i in range(0, total_frames, frame_interval):
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2) 
            frames.append((pil_image, timestamp))

    vidcap.release()
    return frames


def process_new_user_message(message: dict) -> list[dict]:
    if message["files"]:
        if "<image>" in message["text"]:
            content = []
            print("message[files]", message["files"])
            parts = re.split(r'(<image>)', message["text"]) 
            image_index = 0  
            print("parts", parts)
            for part in parts:
                print("part", part)
                if part == "<image>":
                    content.append({"type": "image", "url": message["files"][image_index]})
                    print("file", message["files"][image_index])
                    image_index += 1
                elif part.strip():  
                    content.append({"type": "text", "text": part.strip()})
                elif isinstance(part, str) and not part == "<image>":
                    content.append({"type": "text", "text": part})
            print(content)
            return content
        elif message["files"][0].endswith(".mp4"): 
            content = []
            video = message["files"].pop(0)
            frames = downsample_video(video)
            for frame in frames:
                pil_image, timestamp = frame
                with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
                    pil_image.save(temp_file.name)
                    content.append({"type": "text", "text": f"Frame {timestamp}:"})
                    content.append({"type": "image", "url": temp_file.name})
            print(content)
            return content
        else:
            # non interleaved images
            return [{"type": "text", "text": message["text"]}, *[{"type": "image", "url": path} for path in message["files"]]]
    else:
        return [{"type": "text", "text": message["text"]}]


def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            else:
                current_user_content.append({"type": "image", "url": content[0]})
    return messages


@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
    messages = []
    if system_prompt:
        messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
    messages.extend(process_history(history))
    messages.append({"role": "user", "content": process_new_user_message(message)})

    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    ).to(device=model.device, dtype=torch.bfloat16)

    streamer = TextIteratorStreamer(processor, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    output = ""
    for delta in streamer:
        output += delta
        yield output


examples = [
    [
        {
            "text": "Preciso estar no Japão por 10 dias, indo para Tóquio, Kyoto e Osaka. Pense no número de atrações em cada uma delas e aloque o número de dias para cada cidade. Faça recomendações de transporte público.",
            "files": [],
        }
    ],
    [
        {
            "text": "Escreva o código matplotlib para gerar o mesmo gráfico de barras.",
            "files": ["assets/sample-images/barchart.png"],
        }
    ],
    [
        {
            "text": "O que há de estranho neste vídeo?",
            "files": ["assets/sample-images/tmp.mp4"],
        }
    ],
    [
        {
            "text": "Eu já tenho este suplemento <image> e quero comprar este outro <image>. Há algum aviso que eu deva saber?",
            "files": ["assets/sample-images/pill1.png", "assets/sample-images/pill2.png"],
        }
    ],
    [
        {
            "text": "Escreva um poema inspirado nos elementos visuais das imagens.",
            "files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
        }
    ],
    [
        {
            "text": "Componha uma pequena peça musical inspirada nos elementos visuais das imagens.",
            "files": [
                "assets/sample-images/07-1.png",
                "assets/sample-images/07-2.png",
                "assets/sample-images/07-3.png",
                "assets/sample-images/07-4.png",
            ],
        }
    ],
    [
        {
            "text": "Escreva uma história curta sobre o que pode ter acontecido nesta casa.",
            "files": ["assets/sample-images/08.png"],
        }
    ],
    [
        {
            "text": "Crie uma história curta baseada na sequência de imagens.",
            "files": [
                "assets/sample-images/09-1.png",
                "assets/sample-images/09-2.png",
                "assets/sample-images/09-3.png",
                "assets/sample-images/09-4.png",
                "assets/sample-images/09-5.png",
            ],
        }
    ],
    [
        {
            "text": "Descreva essa imagem.",
            "files": ["assets/sample-images/PIX.png"],
        }
    ],
    [
        {
            "text": "Leia o texto na imagem.",
            "files": ["assets/additional-examples/1.png"],
        }
    ],
    [
        {
            "text": "Quando este bilhete foi datado e quanto custou?",
            "files": ["assets/additional-examples/2.png"],
        }
    ],
    [
        {
            "text": "Leia o texto na imagem em markdown.",
            "files": ["assets/additional-examples/3.png"],
        }
    ],
    [
        {
            "text": "Avalie esta integral.",
            "files": ["assets/additional-examples/4.png"],
        }
    ],
    [
        {
            "text": "Legende esta imagem.",
            "files": ["assets/sample-images/01.png"],
        }
    ],
    [
        {
            "text": "O que diz a placa?",
            "files": ["assets/sample-images/02.png"],
        }
    ],
    [
        {
            "text": "Compare e contraste as duas imagens.",
            "files": ["assets/sample-images/03.png"],
        }
    ],
    [
        {
            "text": "Liste todos os objetos na imagem e suas cores.",
            "files": ["assets/sample-images/04.png"],
        }
    ],
    [
        {
            "text": "Descreva a atmosfera da cena.",
            "files": ["assets/sample-images/05.png"],
        }
    ],
]


demo = gr.ChatInterface(
    fn=run,
    type="messages",
    textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple"),
    multimodal=True,
    additional_inputs=[
        gr.Textbox(label="System Prompt", value="Você é um assistente, responder em ptbr."),
        gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700),
    ],
    stop_btn=False,
    title="Gemma 3 12B PT-BR",
    description="<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' /><br>This is a demo of Gemma 3 12B it, a vision language model with outstanding performance on a wide range of tasks. You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input.",
    examples=examples,
    run_examples_on_click=False,
    cache_examples=False,
    css_paths="style.css",
    delete_cache=(1800, 1800),
)

if __name__ == "__main__":
    demo.launch()