Spaces:
Running
Running
File size: 2,036 Bytes
793ff90 4e6992c 793ff90 4e6992c 793ff90 f1a0e2a 793ff90 f1a0e2a 793ff90 4e6992c f1a0e2a 4e6992c f1a0e2a 4e6992c 793ff90 4e6992c 7f8844d f1a0e2a 4e6992c 793ff90 4e6992c f1a0e2a 793ff90 4e6992c 793ff90 91de782 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import gradio as gr
from transformers import pipeline
import PyPDF2
import re
# Load syllabus from PDF
def read_pdf(file_path):
try:
with open(file_path, "rb") as file:
reader = PyPDF2.PdfReader(file)
text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
return text
except Exception as e:
return f"Error loading syllabus: {str(e)}"
syllabus_text = read_pdf("Syllabus.pdf")
# Extract subjects and topics
def extract_subjects_and_topics(text):
subjects = {}
current_subject = None
for line in text.split("\n"):
line = line.strip()
if re.match(r"^[A-Z ]+$", line): # Matches UPPERCASE subject names
current_subject = line
subjects[current_subject] = []
elif current_subject and line:
subjects[current_subject].append(line)
return subjects
subjects_data = extract_subjects_and_topics(syllabus_text)
# Load AI Model for Chatbot
chatbot = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
# Chat function
def chat_response(message):
message = message.lower()
if "subjects" in message:
return "π Available Subjects:\n\n" + "\n".join(subjects_data.keys())
for subject, topics in subjects_data.items():
if subject.lower() in message:
return f"π Topics under {subject}:\n\n" + "\n".join(topics)
for subject, topics in subjects_data.items():
for topic in topics:
if topic.lower() in message:
return f"π {topic} is covered under {subject}. Refer to your syllabus for details."
return "β Topic not found in syllabus. Please check the spelling or ask about a different topic."
# Create Gradio Interface
iface = gr.Interface(
fn=chat_response,
inputs="text",
outputs="text",
title="Bit GPT 0.2.8",
description="Ask me about syllabus subjects, topics, or general questions!"
)
# Launch App
if __name__ == "__main__":
iface.launch() |