Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,69 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import PyPDF2
|
4 |
-
import
|
5 |
|
6 |
-
# π
|
7 |
def read_pdf(file_path):
|
8 |
-
if not os.path.exists(file_path):
|
9 |
-
return "Error: Syllabus file not found!"
|
10 |
-
|
11 |
try:
|
12 |
with open(file_path, "rb") as file:
|
13 |
reader = PyPDF2.PdfReader(file)
|
14 |
text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
|
15 |
-
return text
|
16 |
except Exception as e:
|
17 |
return f"Error loading syllabus: {str(e)}"
|
18 |
|
19 |
-
syllabus_text = read_pdf("Syllabus.pdf")
|
20 |
|
21 |
-
# π
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
chatbot = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
|
23 |
|
24 |
-
# π
|
25 |
def chat_response(message):
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
response = chatbot(message, max_length=100, do_sample=True)
|
29 |
return response[0]['generated_text']
|
30 |
|
31 |
-
# π Create Gradio Interface
|
32 |
-
iface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
# π Launch App
|
35 |
if __name__ == "__main__":
|
36 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import PyPDF2
|
4 |
+
import json
|
5 |
|
6 |
+
# π Step 1: Extract text from PDF
|
7 |
def read_pdf(file_path):
|
|
|
|
|
|
|
8 |
try:
|
9 |
with open(file_path, "rb") as file:
|
10 |
reader = PyPDF2.PdfReader(file)
|
11 |
text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
|
12 |
+
return text
|
13 |
except Exception as e:
|
14 |
return f"Error loading syllabus: {str(e)}"
|
15 |
|
16 |
+
syllabus_text = read_pdf("Syllabus.pdf")
|
17 |
|
18 |
+
# π Step 2: Extract subjects and topics
|
19 |
+
def extract_subjects_and_topics(text):
|
20 |
+
subjects = {}
|
21 |
+
current_subject = None
|
22 |
+
|
23 |
+
for line in text.split("\n"):
|
24 |
+
line = line.strip()
|
25 |
+
if line.isupper(): # Assuming subject names are in uppercase
|
26 |
+
current_subject = line
|
27 |
+
subjects[current_subject] = []
|
28 |
+
elif current_subject and line:
|
29 |
+
subjects[current_subject].append(line)
|
30 |
+
|
31 |
+
return subjects
|
32 |
+
|
33 |
+
subjects_data = extract_subjects_and_topics(syllabus_text)
|
34 |
+
|
35 |
+
# π Step 3: Convert to JSON format for easy searching
|
36 |
+
subjects_json = json.dumps(subjects_data, indent=4)
|
37 |
+
|
38 |
+
# π Load AI Model for Chatbot
|
39 |
chatbot = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
|
40 |
|
41 |
+
# π Step 4: Chat Function
|
42 |
def chat_response(message):
|
43 |
+
message = message.lower()
|
44 |
+
|
45 |
+
# If user asks for subjects
|
46 |
+
if "subjects" in message:
|
47 |
+
return "π Available Subjects:\n\n" + "\n".join(subjects_data.keys())
|
48 |
+
|
49 |
+
# If user asks for topics under a subject
|
50 |
+
for subject, topics in subjects_data.items():
|
51 |
+
if subject.lower() in message:
|
52 |
+
return f"π Topics under {subject}:\n\n" + "\n".join(topics)
|
53 |
+
|
54 |
+
# If chatbot response is needed
|
55 |
response = chatbot(message, max_length=100, do_sample=True)
|
56 |
return response[0]['generated_text']
|
57 |
|
58 |
+
# π Step 5: Create Gradio Interface
|
59 |
+
iface = gr.Interface(
|
60 |
+
fn=chat_response,
|
61 |
+
inputs="text",
|
62 |
+
outputs="text",
|
63 |
+
title="Bit GPT 0.2.8",
|
64 |
+
description="Ask me about syllabus subjects, topics, or general questions!"
|
65 |
+
)
|
66 |
|
67 |
+
# π Step 6: Launch App
|
68 |
if __name__ == "__main__":
|
69 |
iface.launch()
|