|
import torch
|
|
import gradio as gr
|
|
from torchvision import transforms
|
|
from PIL import Image
|
|
import numpy as np
|
|
from model import model
|
|
import tempfile
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
transform = transforms.Compose([
|
|
transforms.Resize((32, 32)),
|
|
transforms.ToTensor()
|
|
])
|
|
|
|
resize_output = transforms.Resize((512, 512))
|
|
|
|
def interpolate_vectors(v1, v2, num_steps):
|
|
return [v1 * (1 - alpha) + v2 * alpha for alpha in np.linspace(0, 1, num_steps)]
|
|
|
|
def to_pil(img_tensor):
|
|
img = img_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
|
img = (img * 255).clip(0, 255).astype(np.uint8)
|
|
return Image.fromarray(img)
|
|
|
|
def interpolate_images_gif(img1, img2, num_interpolations=10, duration=100):
|
|
img1 = Image.fromarray(img1).convert('RGB')
|
|
img2 = Image.fromarray(img2).convert('RGB')
|
|
img1_tensor = transform(img1).unsqueeze(0).to(device)
|
|
img2_tensor = transform(img2).unsqueeze(0).to(device)
|
|
|
|
with torch.no_grad():
|
|
mu1, _ = model.encode(img1_tensor)
|
|
mu2, _ = model.encode(img2_tensor)
|
|
interpolated = interpolate_vectors(mu1, mu2, num_interpolations)
|
|
decoded_images = []
|
|
for z in interpolated:
|
|
out = model.decode(z)
|
|
img = to_pil(out)
|
|
img_resized = resize_output(img)
|
|
decoded_images.append(img_resized)
|
|
|
|
tmp_file = tempfile.NamedTemporaryFile(suffix=".gif", delete=False)
|
|
decoded_images[0].save(
|
|
tmp_file.name,
|
|
save_all=True,
|
|
append_images=decoded_images[1:],
|
|
duration=duration,
|
|
loop=0
|
|
)
|
|
return tmp_file.name
|
|
|
|
def get_interface():
|
|
with gr.Blocks() as iface:
|
|
gr.Markdown("## Latent Space Interpolation (GIF Output)")
|
|
with gr.Row():
|
|
img1 = gr.Image(label="First Image", type="numpy")
|
|
img2 = gr.Image(label="Second Image", type="numpy")
|
|
slider_steps = gr.Slider(5, 30, value=10, step=1, label="Number of Interpolations")
|
|
slider_duration = gr.Slider(50, 500, value=100, step=10, label="Duration per Frame (ms)")
|
|
output_gif = gr.Image(label="Interpolation GIF")
|
|
run_button = gr.Button("Interpolate")
|
|
|
|
run_button.click(
|
|
fn=interpolate_images_gif,
|
|
inputs=[img1, img2, slider_steps, slider_duration],
|
|
outputs=output_gif
|
|
)
|
|
|
|
examples = [
|
|
["example_images/image1.jpg", "example_images/image2.jpg", 10, 100],
|
|
["example_images/image3.jpg", "example_images/image4.jpg", 15, 150],
|
|
["example_images/image5.jpg", "example_images/image6.jpg", 20, 200],
|
|
["example_images/image7.jpg", "example_images/image8.jpg", 25, 250],
|
|
]
|
|
|
|
gr.Examples(
|
|
examples=examples,
|
|
inputs=[img1, img2, slider_steps, slider_duration],
|
|
outputs=output_gif,
|
|
fn=interpolate_images_gif,
|
|
cache_examples=False
|
|
)
|
|
return iface
|
|
|