import torch import gradio as gr from torchvision import transforms from PIL import Image import numpy as np from model import model import tempfile device = torch.device("cuda" if torch.cuda.is_available() else "cpu") transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor() ]) resize_output = transforms.Resize((512, 512)) def interpolate_vectors(v1, v2, num_steps): return [v1 * (1 - alpha) + v2 * alpha for alpha in np.linspace(0, 1, num_steps)] def to_pil(img_tensor): img = img_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy() img = (img * 255).clip(0, 255).astype(np.uint8) return Image.fromarray(img) def interpolate_images_gif(img1, img2, num_interpolations=10, duration=100): img1 = Image.fromarray(img1).convert('RGB') img2 = Image.fromarray(img2).convert('RGB') img1_tensor = transform(img1).unsqueeze(0).to(device) img2_tensor = transform(img2).unsqueeze(0).to(device) with torch.no_grad(): mu1, _ = model.encode(img1_tensor) mu2, _ = model.encode(img2_tensor) interpolated = interpolate_vectors(mu1, mu2, num_interpolations) decoded_images = [] for z in interpolated: out = model.decode(z) img = to_pil(out) img_resized = resize_output(img) decoded_images.append(img_resized) tmp_file = tempfile.NamedTemporaryFile(suffix=".gif", delete=False) decoded_images[0].save( tmp_file.name, save_all=True, append_images=decoded_images[1:], duration=duration, loop=0 ) return tmp_file.name def get_interface(): with gr.Blocks() as iface: gr.Markdown("## Latent Space Interpolation (GIF Output)") with gr.Row(): img1 = gr.Image(label="First Image", type="numpy") img2 = gr.Image(label="Second Image", type="numpy") slider_steps = gr.Slider(5, 30, value=10, step=1, label="Number of Interpolations") slider_duration = gr.Slider(50, 500, value=100, step=10, label="Duration per Frame (ms)") output_gif = gr.Image(label="Interpolation GIF") run_button = gr.Button("Interpolate") run_button.click( fn=interpolate_images_gif, inputs=[img1, img2, slider_steps, slider_duration], outputs=output_gif ) examples = [ ["example_images/image1.jpg", "example_images/image2.jpg", 10, 100], ["example_images/image3.jpg", "example_images/image4.jpg", 15, 150], ["example_images/image5.jpg", "example_images/image6.jpg", 20, 200], ["example_images/image7.jpg", "example_images/image8.jpg", 25, 250], ] gr.Examples( examples=examples, inputs=[img1, img2, slider_steps, slider_duration], outputs=output_gif, fn=interpolate_images_gif, cache_examples=False ) return iface