AIPromoStudio / app.py
Bils's picture
Update app.py
559ca26 verified
raw
history blame
14.9 kB
import gradio as gr
import os
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import tempfile
import spaces
# Coqui TTS
from TTS.api import TTS
# ---------------------------------------------------------------------
# Load Environment Variables
# ---------------------------------------------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN") # Adjust if needed
# ---------------------------------------------------------------------
# Global Model Caches
# ---------------------------------------------------------------------
LLAMA_PIPELINES = {}
MUSICGEN_MODELS = {}
TTS_MODELS = {}
# ---------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------
def get_llama_pipeline(model_id: str, token: str):
"""
Returns a cached LLaMA pipeline if available; otherwise, loads it.
"""
if model_id in LLAMA_PIPELINES:
return LLAMA_PIPELINES[model_id]
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
LLAMA_PIPELINES[model_id] = text_pipeline
return text_pipeline
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
"""
Returns a cached MusicGen model if available; otherwise, loads it.
Uses the 'large' variant for higher quality outputs.
"""
if model_key in MUSICGEN_MODELS:
return MUSICGEN_MODELS[model_key]
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
processor = AutoProcessor.from_pretrained(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
MUSICGEN_MODELS[model_key] = (model, processor)
return model, processor
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
"""
Returns a cached TTS model if available; otherwise, loads it.
"""
if model_name in TTS_MODELS:
return TTS_MODELS[model_name]
tts_model = TTS(model_name)
TTS_MODELS[model_name] = tts_model
return tts_model
# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
"""
Generates a script, sound design suggestions, and music ideas from a user prompt.
Returns a tuple of strings: (voice_script, sound_design, music_suggestions).
"""
try:
text_pipeline = get_llama_pipeline(model_id, token)
system_prompt = (
"You are an expert radio imaging producer specializing in sound design and music. "
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n"
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
)
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
with torch.inference_mode():
result = text_pipeline(
combined_prompt,
max_new_tokens=300,
do_sample=True,
temperature=0.8
)
generated_text = result[0]["generated_text"]
if "Output:" in generated_text:
generated_text = generated_text.split("Output:")[-1].strip()
# Default placeholders
voice_script = "No voice-over script found."
sound_design = "No sound design suggestions found."
music_suggestions = "No music suggestions found."
# Voice-Over Script
if "Voice-Over Script:" in generated_text:
parts = generated_text.split("Voice-Over Script:")
voice_script_part = parts[1]
if "Sound Design Suggestions:" in voice_script_part:
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
else:
voice_script = voice_script_part.strip()
# Sound Design
if "Sound Design Suggestions:" in generated_text:
parts = generated_text.split("Sound Design Suggestions:")
sound_design_part = parts[1]
if "Music Suggestions:" in sound_design_part:
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
else:
sound_design = sound_design_part.strip()
# Music Suggestions
if "Music Suggestions:" in generated_text:
parts = generated_text.split("Music Suggestions:")
music_suggestions = parts[1].strip()
return voice_script, sound_design, music_suggestions
except Exception as e:
return f"Error generating script: {e}", "", ""
# ---------------------------------------------------------------------
# Voice-Over Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
"""
Generates a voice-over from the provided script using the Coqui TTS model.
Returns the file path to the generated .wav file.
"""
try:
if not script.strip():
return "Error: No script provided."
tts_model = get_tts_model(tts_model_name)
# Generate and save voice
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
tts_model.tts_to_file(text=script, file_path=output_path)
return output_path
except Exception as e:
return f"Error generating voice: {e}"
# ---------------------------------------------------------------------
# Music Generation Function (Using facebook/musicgen-large)
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_music(prompt: str, audio_length: int):
"""
Generates music from the 'facebook/musicgen-large' model based on the prompt.
Returns the file path to the generated .wav file.
"""
try:
if not prompt.strip():
return "Error: No music suggestion provided."
model_key = "facebook/musicgen-large"
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
with torch.inference_mode():
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
audio_data = outputs[0, 0].cpu().numpy()
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
output_path = f"{tempfile.gettempdir()}/musicgen_large_generated_music.wav"
write(output_path, 44100, normalized_audio)
return output_path
except Exception as e:
return f"Error generating music: {e}"
# ---------------------------------------------------------------------
# Audio Blending Function with Ducking
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
"""
Blends two audio files (voice and music). If ducking=True,
the music is attenuated by 'duck_level' dB while the voice is playing.
Returns the file path to the blended .wav file.
"""
try:
if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
return "Error: Missing audio files for blending."
voice = AudioSegment.from_wav(voice_path)
music = AudioSegment.from_wav(music_path)
# If the voice is longer than the music, extend music with silence
if len(voice) > len(music):
extension = AudioSegment.silent(duration=(len(voice) - len(music)))
music = music + extension
if ducking:
# Step 1: Reduce music by `duck_level` dB for the portion matching the voice duration
ducked_music_part = music[:len(voice)] - duck_level
# Overlay voice on top of the ducked music portion
voice_overlaid = ducked_music_part.overlay(voice)
# Step 2: Keep the rest of the music as-is
remainder = music[len(voice):]
final_audio = voice_overlaid + remainder
else:
# No ducking, just overlay
final_audio = music.overlay(voice)
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
final_audio.export(output_path, format="wav")
return output_path
except Exception as e:
return f"Error blending audio: {e}"
# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("""
# 🎧 AI Promo Studio with MusicGen Large, Voice Over & Audio Blending 🚀
Welcome to **AI Promo Studio**!
This pipeline uses **facebook/musicgen-large** for high-quality background music (more resource-intensive).
**Workflow**:
1. **Generate Script** (via LLaMA)
2. **Generate Voice-Over** (via Coqui TTS)
3. **Generate Music** (via MusicGen Large)
4. **Blend** (Voice + Music) with optional ducking
""")
with gr.Tabs():
# Step 1: Generate Script
with gr.Tab("Step 1: Generate Script"):
with gr.Row():
user_prompt = gr.Textbox(
label="Promo Idea",
placeholder="E.g., A 30-second promo for a morning show...",
lines=2
)
llama_model_id = gr.Textbox(
label="LLaMA Model ID",
value="meta-llama/Meta-Llama-3-8B-Instruct",
placeholder="Enter a valid Hugging Face model ID"
)
duration = gr.Slider(
label="Desired Promo Duration (seconds)",
minimum=15,
maximum=60,
step=15,
value=30
)
generate_script_button = gr.Button("Generate Script")
script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
generate_script_button.click(
fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
inputs=[user_prompt, llama_model_id, duration],
outputs=[script_output, sound_design_output, music_suggestion_output],
)
# Step 2: Generate Voice
with gr.Tab("Step 2: Generate Voice"):
gr.Markdown("Generate the voice-over using a Coqui TTS model.")
selected_tts_model = gr.Dropdown(
label="TTS Model",
choices=[
"tts_models/en/ljspeech/tacotron2-DDC",
"tts_models/en/ljspeech/vits",
"tts_models/en/sam/tacotron-DDC",
],
value="tts_models/en/ljspeech/tacotron2-DDC",
multiselect=False
)
generate_voice_button = gr.Button("Generate Voice-Over")
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
generate_voice_button.click(
fn=lambda script, tts_model: generate_voice(script, tts_model),
inputs=[script_output, selected_tts_model],
outputs=voice_audio_output,
)
# Step 3: Generate Music (MusicGen Large)
with gr.Tab("Step 3: Generate Music"):
gr.Markdown("Generate a music track with the **MusicGen Large** model.")
audio_length = gr.Slider(
label="Music Length (tokens)",
minimum=128,
maximum=1024,
step=64,
value=512,
info="Increase tokens for longer audio, but be mindful of inference time."
)
generate_music_button = gr.Button("Generate Music")
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
generate_music_button.click(
fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
inputs=[music_suggestion_output, audio_length],
outputs=[music_output],
)
# Step 4: Blend Audio
with gr.Tab("Step 4: Blend Audio"):
gr.Markdown("Combine voice-over and music, optionally applying ducking.")
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
duck_level_slider = gr.Slider(
label="Ducking Level (dB attenuation)",
minimum=0,
maximum=20,
step=1,
value=10
)
blend_button = gr.Button("Blend Voice + Music")
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
blend_button.click(
fn=blend_audio,
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
outputs=blended_output
)
# Footer
gr.Markdown("""
<hr>
<p style="text-align: center; font-size: 0.9em;">
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
</p>
""")
# Visitor Badge
gr.HTML("""
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
</a>
""")
demo.launch(debug=True)