File size: 14,851 Bytes
17d10a7
a15d204
d448add
db46bfb
1c1b50f
 
db46bfb
1c1b50f
db8ba25
db46bfb
cf3593c
d9bf0f0
b950350
6aba99a
3168a3e
559ca26
 
019c404
3168a3e
2de59b3
 
 
cf3593c
559ca26
2de59b3
 
 
 
 
 
559ca26
2de59b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559ca26
2de59b3
 
559ca26
2de59b3
 
 
 
 
 
 
 
 
 
 
 
 
cf3593c
559ca26
 
 
 
 
 
 
 
 
 
 
 
1c1b50f
b950350
1c1b50f
a38649c
b950350
2de59b3
 
 
 
dfa5d3e
2de59b3
db8ba25
dfa5d3e
2de59b3
fd8d42a
2de59b3
 
 
3168a3e
74b6128
e564c8e
2de59b3
 
 
 
 
 
 
 
 
 
 
 
559ca26
2de59b3
 
 
 
559ca26
2de59b3
 
559ca26
 
 
 
 
fd8d42a
559ca26
2de59b3
 
559ca26
 
 
 
 
2de59b3
559ca26
2de59b3
 
559ca26
fd8d42a
 
2de59b3
b950350
74b6128
b950350
2de59b3
b950350
559ca26
b950350
a38649c
559ca26
2de59b3
559ca26
 
2de59b3
b950350
559ca26
 
 
 
 
 
 
 
 
 
dfa5d3e
559ca26
dfa5d3e
2de59b3
dfa5d3e
559ca26
dfa5d3e
a38649c
217c4b5
2de59b3
559ca26
2de59b3
 
17d10a7
559ca26
 
 
 
2de59b3
a3b5047
217c4b5
 
16184b2
2de59b3
 
b950350
217c4b5
 
d9bf0f0
559ca26
217c4b5
1808e7a
217c4b5
16184b2
cf3593c
b950350
d448add
16184b2
dfa5d3e
559ca26
dfa5d3e
559ca26
 
2de59b3
559ca26
 
 
2de59b3
ecc69bf
559ca26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9bf0f0
559ca26
66b1260
d9bf0f0
 
b950350
ecc69bf
3172dc7
ede9fc5
559ca26
 
 
 
 
 
 
 
 
ede9fc5
ecc69bf
35e8eba
 
 
 
2de59b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35e8eba
 
2de59b3
 
 
35e8eba
 
2de59b3
35e8eba
 
 
 
559ca26
35e8eba
559ca26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35e8eba
559ca26
35e8eba
559ca26
 
 
 
 
 
 
 
 
35e8eba
2de59b3
35e8eba
 
2de59b3
35e8eba
 
 
 
559ca26
35e8eba
559ca26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c25665
559ca26
b950350
2de59b3
 
 
 
b950350
1d543ba
2de59b3
1d543ba
2de59b3
 
 
1d543ba
3fe530b
35e8eba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import gradio as gr
import os
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    pipeline,
    AutoProcessor,
    MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import tempfile
import spaces

# Coqui TTS
from TTS.api import TTS

# ---------------------------------------------------------------------
# Load Environment Variables
# ---------------------------------------------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")  # Adjust if needed

# ---------------------------------------------------------------------
# Global Model Caches
# ---------------------------------------------------------------------
LLAMA_PIPELINES = {}
MUSICGEN_MODELS = {}
TTS_MODELS = {}

# ---------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------
def get_llama_pipeline(model_id: str, token: str):
    """
    Returns a cached LLaMA pipeline if available; otherwise, loads it.
    """
    if model_id in LLAMA_PIPELINES:
        return LLAMA_PIPELINES[model_id]

    tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        use_auth_token=token,
        torch_dtype=torch.float16,
        device_map="auto",
        trust_remote_code=True,
    )
    text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
    LLAMA_PIPELINES[model_id] = text_pipeline
    return text_pipeline


def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
    """
    Returns a cached MusicGen model if available; otherwise, loads it.
    Uses the 'large' variant for higher quality outputs.
    """
    if model_key in MUSICGEN_MODELS:
        return MUSICGEN_MODELS[model_key]

    model = MusicgenForConditionalGeneration.from_pretrained(model_key)
    processor = AutoProcessor.from_pretrained(model_key)

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)

    MUSICGEN_MODELS[model_key] = (model, processor)
    return model, processor


def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
    """
    Returns a cached TTS model if available; otherwise, loads it.
    """
    if model_name in TTS_MODELS:
        return TTS_MODELS[model_name]

    tts_model = TTS(model_name)
    TTS_MODELS[model_name] = tts_model
    return tts_model


# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
    """
    Generates a script, sound design suggestions, and music ideas from a user prompt.
    Returns a tuple of strings: (voice_script, sound_design, music_suggestions).
    """
    try:
        text_pipeline = get_llama_pipeline(model_id, token)

        system_prompt = (
            "You are an expert radio imaging producer specializing in sound design and music. "
            f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
            "1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n"
            "2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
            "3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
        )
        combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"

        with torch.inference_mode():
            result = text_pipeline(
                combined_prompt,
                max_new_tokens=300,
                do_sample=True,
                temperature=0.8
            )

        generated_text = result[0]["generated_text"]
        if "Output:" in generated_text:
            generated_text = generated_text.split("Output:")[-1].strip()

        # Default placeholders
        voice_script = "No voice-over script found."
        sound_design = "No sound design suggestions found."
        music_suggestions = "No music suggestions found."

        # Voice-Over Script
        if "Voice-Over Script:" in generated_text:
            parts = generated_text.split("Voice-Over Script:")
            voice_script_part = parts[1]
            if "Sound Design Suggestions:" in voice_script_part:
                voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
            else:
                voice_script = voice_script_part.strip()

        # Sound Design
        if "Sound Design Suggestions:" in generated_text:
            parts = generated_text.split("Sound Design Suggestions:")
            sound_design_part = parts[1]
            if "Music Suggestions:" in sound_design_part:
                sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
            else:
                sound_design = sound_design_part.strip()

        # Music Suggestions
        if "Music Suggestions:" in generated_text:
            parts = generated_text.split("Music Suggestions:")
            music_suggestions = parts[1].strip()

        return voice_script, sound_design, music_suggestions

    except Exception as e:
        return f"Error generating script: {e}", "", ""


# ---------------------------------------------------------------------
# Voice-Over Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
    """
    Generates a voice-over from the provided script using the Coqui TTS model.
    Returns the file path to the generated .wav file.
    """
    try:
        if not script.strip():
            return "Error: No script provided."

        tts_model = get_tts_model(tts_model_name)

        # Generate and save voice
        output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
        tts_model.tts_to_file(text=script, file_path=output_path)
        return output_path

    except Exception as e:
        return f"Error generating voice: {e}"


# ---------------------------------------------------------------------
# Music Generation Function (Using facebook/musicgen-large)
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_music(prompt: str, audio_length: int):
    """
    Generates music from the 'facebook/musicgen-large' model based on the prompt.
    Returns the file path to the generated .wav file.
    """
    try:
        if not prompt.strip():
            return "Error: No music suggestion provided."

        model_key = "facebook/musicgen-large"
        musicgen_model, musicgen_processor = get_musicgen_model(model_key)

        device = "cuda" if torch.cuda.is_available() else "cpu"
        inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)

        with torch.inference_mode():
            outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)

        audio_data = outputs[0, 0].cpu().numpy()
        normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")

        output_path = f"{tempfile.gettempdir()}/musicgen_large_generated_music.wav"
        write(output_path, 44100, normalized_audio)

        return output_path

    except Exception as e:
        return f"Error generating music: {e}"


# ---------------------------------------------------------------------
# Audio Blending Function with Ducking
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
    """
    Blends two audio files (voice and music). If ducking=True,
    the music is attenuated by 'duck_level' dB while the voice is playing.
    Returns the file path to the blended .wav file.
    """
    try:
        if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
            return "Error: Missing audio files for blending."

        voice = AudioSegment.from_wav(voice_path)
        music = AudioSegment.from_wav(music_path)

        # If the voice is longer than the music, extend music with silence
        if len(voice) > len(music):
            extension = AudioSegment.silent(duration=(len(voice) - len(music)))
            music = music + extension

        if ducking:
            # Step 1: Reduce music by `duck_level` dB for the portion matching the voice duration
            ducked_music_part = music[:len(voice)] - duck_level
            # Overlay voice on top of the ducked music portion
            voice_overlaid = ducked_music_part.overlay(voice)

            # Step 2: Keep the rest of the music as-is
            remainder = music[len(voice):]
            final_audio = voice_overlaid + remainder
        else:
            # No ducking, just overlay
            final_audio = music.overlay(voice)

        output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
        final_audio.export(output_path, format="wav")
        return output_path

    except Exception as e:
        return f"Error blending audio: {e}"


# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
    gr.Markdown("""
    # 🎧 AI Promo Studio with MusicGen Large, Voice Over & Audio Blending 🚀  
    Welcome to **AI Promo Studio**!  
    This pipeline uses **facebook/musicgen-large** for high-quality background music (more resource-intensive).  

    **Workflow**:  
    1. **Generate Script** (via LLaMA)  
    2. **Generate Voice-Over** (via Coqui TTS)  
    3. **Generate Music** (via MusicGen Large)  
    4. **Blend** (Voice + Music) with optional ducking  
    """)

    with gr.Tabs():
        # Step 1: Generate Script
        with gr.Tab("Step 1: Generate Script"):
            with gr.Row():
                user_prompt = gr.Textbox(
                    label="Promo Idea", 
                    placeholder="E.g., A 30-second promo for a morning show...",
                    lines=2
                )
                llama_model_id = gr.Textbox(
                    label="LLaMA Model ID", 
                    value="meta-llama/Meta-Llama-3-8B-Instruct", 
                    placeholder="Enter a valid Hugging Face model ID"
                )
                duration = gr.Slider(
                    label="Desired Promo Duration (seconds)",
                    minimum=15, 
                    maximum=60, 
                    step=15, 
                    value=30
                )

            generate_script_button = gr.Button("Generate Script")
            script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
            sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
            music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)

            generate_script_button.click(
                fn=lambda user_prompt, model_id, dur: generate_script(user_prompt, model_id, HF_TOKEN, dur),
                inputs=[user_prompt, llama_model_id, duration],
                outputs=[script_output, sound_design_output, music_suggestion_output],
            )

        # Step 2: Generate Voice
        with gr.Tab("Step 2: Generate Voice"):
            gr.Markdown("Generate the voice-over using a Coqui TTS model.")
            selected_tts_model = gr.Dropdown(
                label="TTS Model",
                choices=[
                    "tts_models/en/ljspeech/tacotron2-DDC",  
                    "tts_models/en/ljspeech/vits", 
                    "tts_models/en/sam/tacotron-DDC", 
                ],
                value="tts_models/en/ljspeech/tacotron2-DDC",
                multiselect=False
            )
            generate_voice_button = gr.Button("Generate Voice-Over")
            voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")

            generate_voice_button.click(
                fn=lambda script, tts_model: generate_voice(script, tts_model),
                inputs=[script_output, selected_tts_model],
                outputs=voice_audio_output,
            )

        # Step 3: Generate Music (MusicGen Large)
        with gr.Tab("Step 3: Generate Music"):
            gr.Markdown("Generate a music track with the **MusicGen Large** model.")
            audio_length = gr.Slider(
                label="Music Length (tokens)",
                minimum=128, 
                maximum=1024, 
                step=64, 
                value=512,
                info="Increase tokens for longer audio, but be mindful of inference time."
            )
            generate_music_button = gr.Button("Generate Music")
            music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")

            generate_music_button.click(
                fn=lambda music_suggestion, length: generate_music(music_suggestion, length),
                inputs=[music_suggestion_output, audio_length],
                outputs=[music_output],
            )

        # Step 4: Blend Audio
        with gr.Tab("Step 4: Blend Audio"):
            gr.Markdown("Combine voice-over and music, optionally applying ducking.")
            ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
            duck_level_slider = gr.Slider(
                label="Ducking Level (dB attenuation)", 
                minimum=0, 
                maximum=20, 
                step=1, 
                value=10
            )
            blend_button = gr.Button("Blend Voice + Music")
            blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")

            blend_button.click(
                fn=blend_audio,
                inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
                outputs=blended_output
            )

    # Footer
    gr.Markdown("""
    <hr>
    <p style="text-align: center; font-size: 0.9em;">
        Created with ❤️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
    </p>
    """)
    
    # Visitor Badge
    gr.HTML("""
    <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
        <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
    </a>
    """)

demo.launch(debug=True)