AIPromoStudio / app.py
Bils's picture
Update app.py
2edecf4 verified
raw
history blame
18.8 kB
import os
import re
import torch
import tempfile
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import spaces
import gradio as gr
# Transformers & Models
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration,
)
# Coqui TTS
from TTS.api import TTS
# ---------------------------------------------------------------------
# Load Environment Variables
# ---------------------------------------------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
# ---------------------------------------------------------------------
# Global Model Caches
# ---------------------------------------------------------------------
LLAMA_PIPELINES = {}
MUSICGEN_MODELS = {}
TTS_MODELS = {}
# ---------------------------------------------------------------------
# Utility Function: Clean Text
# ---------------------------------------------------------------------
def clean_text(text: str) -> str:
"""
Removes undesired characters (e.g., asterisks) that might not be recognized by the model's vocabulary.
"""
return re.sub(r'\*', '', text)
# ---------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------
def get_llama_pipeline(model_id: str, token: str):
"""
Returns a cached LLaMA pipeline if available; otherwise, loads it.
"""
if model_id in LLAMA_PIPELINES:
return LLAMA_PIPELINES[model_id]
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
LLAMA_PIPELINES[model_id] = text_pipeline
return text_pipeline
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
"""
Returns a cached MusicGen model if available; otherwise, loads it.
Uses the 'large' variant for higher quality outputs.
"""
if model_key in MUSICGEN_MODELS:
return MUSICGEN_MODELS[model_key]
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
processor = AutoProcessor.from_pretrained(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
MUSICGEN_MODELS[model_key] = (model, processor)
return model, processor
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
"""
Returns a cached TTS model if available; otherwise, loads it.
"""
if model_name in TTS_MODELS:
return TTS_MODELS[model_name]
tts_model = TTS(model_name)
TTS_MODELS[model_name] = tts_model
return tts_model
# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
"""
Generates a script, sound design suggestions, and music ideas from a user prompt.
Returns a tuple: (voice_script, sound_design, music_suggestions).
"""
try:
text_pipeline = get_llama_pipeline(model_id, token)
system_prompt = (
"You are an expert radio imaging producer specializing in sound design and music. "
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n"
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
)
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
with torch.inference_mode():
result = text_pipeline(
combined_prompt,
max_new_tokens=300,
do_sample=True,
temperature=0.8
)
generated_text = result[0]["generated_text"]
if "Output:" in generated_text:
generated_text = generated_text.split("Output:")[-1].strip()
voice_script = "No voice-over script found."
sound_design = "No sound design suggestions found."
music_suggestions = "No music suggestions found."
if "Voice-Over Script:" in generated_text:
parts = generated_text.split("Voice-Over Script:")
voice_script_part = parts[1]
if "Sound Design Suggestions:" in voice_script_part:
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
else:
voice_script = voice_script_part.strip()
if "Sound Design Suggestions:" in generated_text:
parts = generated_text.split("Sound Design Suggestions:")
sound_design_part = parts[1]
if "Music Suggestions:" in sound_design_part:
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
else:
sound_design = sound_design_part.strip()
if "Music Suggestions:" in generated_text:
parts = generated_text.split("Music Suggestions:")
music_suggestions = parts[1].strip()
return voice_script, sound_design, music_suggestions
except Exception as e:
return f"Error generating script: {e}", "", ""
# ---------------------------------------------------------------------
# Voice-Over Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
"""
Generates a voice-over from the provided script using Coqui TTS.
Returns the file path to the generated .wav file.
"""
try:
if not script.strip():
return "Error: No script provided."
cleaned_script = clean_text(script)
tts_model = get_tts_model(tts_model_name)
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
return output_path
except Exception as e:
return f"Error generating voice: {e}"
# ---------------------------------------------------------------------
# Music Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=200)
def generate_music(prompt: str, audio_length: int):
"""
Generates music from the 'facebook/musicgen-large' model based on the prompt.
Returns the file path to the generated .wav file.
"""
try:
if not prompt.strip():
return "Error: No music suggestion provided."
model_key = "facebook/musicgen-large"
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.inference_mode():
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
audio_data = outputs[0, 0].cpu().numpy()
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
write(output_path, 44100, normalized_audio)
return output_path
except Exception as e:
return f"Error generating music: {e}"
# ---------------------------------------------------------------------
# Audio Blending Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
"""
Blends two audio files (voice and music).
Returns the file path to the blended .wav file.
"""
try:
if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
return "Error: Missing audio files for blending."
voice = AudioSegment.from_wav(voice_path)
music = AudioSegment.from_wav(music_path)
voice_len = len(voice)
music_len = len(music)
if music_len < voice_len:
looped_music = AudioSegment.empty()
while len(looped_music) < voice_len:
looped_music += music
music = looped_music
if len(music) > voice_len:
music = music[:voice_len]
final_audio = music.overlay(voice, gain_during_overlay=-duck_level) if ducking else music.overlay(voice)
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
final_audio.export(output_path, format="wav")
return output_path
except Exception as e:
return f"Error blending audio: {e}"
# ---------------------------------------------------------------------
# Agent Function: Orchestrate the Full Workflow
# ---------------------------------------------------------------------
@spaces.GPU(duration=400)
def run_agent(user_prompt: str, llama_model_id: str, duration: int, tts_model_name: str, music_length: int, ducking: bool, duck_level: int):
"""
Runs the full workflow as an agent:
1. Generates a script (voice-over, sound design, and music suggestions).
2. Synthesizes a voice-over.
3. Generates a music track.
4. Blends the voice and music.
Returns all generated components.
"""
voice_script, sound_design, music_suggestions = generate_script(user_prompt, llama_model_id, HF_TOKEN, duration)
voice_file = generate_voice(voice_script, tts_model_name)
music_file = generate_music(music_suggestions, music_length)
blended_file = blend_audio(voice_file, music_file, ducking, duck_level)
return voice_script, sound_design, music_suggestions, voice_file, music_file, blended_file
# ---------------------------------------------------------------------
# Gradio Interface with Enhanced UI
# ---------------------------------------------------------------------
with gr.Blocks(css="""
body {
background: linear-gradient(135deg, #1d1f21, #3a3d41);
color: #f0f0f0;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.header {
text-align: center;
padding: 2rem 1rem;
background: linear-gradient(90deg, #6a11cb, #2575fc);
border-radius: 0 0 20px 20px;
margin-bottom: 2rem;
}
.header h1 {
margin: 0;
font-size: 2.5rem;
}
.header p {
font-size: 1.2rem;
}
.gradio-container {
background: #2e2e2e;
border-radius: 10px;
padding: 1rem;
}
.tab-title {
font-size: 1.1rem;
font-weight: bold;
}
.footer {
text-align: center;
font-size: 0.9em;
margin-top: 2rem;
padding: 1rem;
color: #cccccc;
}
""") as demo:
# Custom Header
with gr.Row(elem_classes="header"):
gr.Markdown("""
<h1>🎧 AI Promo Studio</h1>
<p>Your all-in-one AI solution for crafting engaging audio promos.</p>
""")
gr.Markdown("""
Welcome to **AI Promo Studio**! This platform leverages state-of-the-art AI models to help you generate:
- A compelling voice-over script (with sound design and music suggestions),
- A natural-sounding voice-over,
- Custom music tracks,
- And a fully blended audio promo.
""")
with gr.Tabs():
# Tab 1: Script Generation
with gr.Tab("πŸ“ Script Generation"):
with gr.Row():
user_prompt = gr.Textbox(label="Promo Idea", placeholder="E.g., A 30-second promo for a morning show...", lines=2)
with gr.Row():
llama_model_id = gr.Textbox(label="LLaMA Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct", placeholder="Enter a valid Hugging Face model ID")
duration = gr.Slider(label="Promo Duration (seconds)", minimum=15, maximum=60, step=15, value=30)
generate_script_button = gr.Button("Generate Script", variant="primary")
script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
generate_script_button.click(fn=lambda prompt, model, dur: generate_script(prompt, model, HF_TOKEN, dur),
inputs=[user_prompt, llama_model_id, duration],
outputs=[script_output, sound_design_output, music_suggestion_output])
# Tab 2: Voice Synthesis
with gr.Tab("🎀 Voice Synthesis"):
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
selected_tts_model = gr.Dropdown(label="TTS Model",
choices=["tts_models/en/ljspeech/tacotron2-DDC", "tts_models/en/ljspeech/vits", "tts_models/en/sam/tacotron-DDC"],
value="tts_models/en/ljspeech/tacotron2-DDC", multiselect=False)
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
generate_voice_button.click(fn=lambda script, tts: generate_voice(script, tts),
inputs=[script_output, selected_tts_model],
outputs=voice_audio_output)
# Tab 3: Music Production
with gr.Tab("🎢 Music Production"):
gr.Markdown("Generate a custom music track using the MusicGen Large model.")
audio_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512, info="Increase tokens for longer audio (inference time may vary).")
generate_music_button = gr.Button("Generate Music", variant="primary")
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
generate_music_button.click(fn=lambda sugg, length: generate_music(sugg, length),
inputs=[music_suggestion_output, audio_length],
outputs=[music_output])
# Tab 4: Audio Blending
with gr.Tab("🎚️ Audio Blending"):
gr.Markdown("Blend your voice-over and music track. Enable ducking to lower the music during voice segments.")
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
duck_level_slider = gr.Slider(label="Ducking Level (dB attenuation)", minimum=0, maximum=20, step=1, value=10)
blend_button = gr.Button("Blend Voice + Music", variant="primary")
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
blend_button.click(fn=blend_audio,
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
outputs=blended_output)
# Tab 5: Agent – Full Workflow
with gr.Tab("πŸ€– Agent"):
gr.Markdown("Let the agent handle everything in one go: generate script, synthesize voice, produce music, and blend the final ad.")
with gr.Row():
agent_prompt = gr.Textbox(label="Ad Promo Idea", placeholder="Enter your ad promo concept...", lines=2)
with gr.Row():
agent_llama_model_id = gr.Textbox(label="LLaMA Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct", placeholder="Enter a valid Hugging Face model ID")
agent_duration = gr.Slider(label="Promo Duration (seconds)", minimum=15, maximum=60, step=15, value=30)
with gr.Row():
agent_tts_model = gr.Dropdown(label="TTS Model",
choices=["tts_models/en/ljspeech/tacotron2-DDC", "tts_models/en/ljspeech/vits", "tts_models/en/sam/tacotron-DDC"],
value="tts_models/en/ljspeech/tacotron2-DDC", multiselect=False)
agent_music_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
with gr.Row():
agent_ducking = gr.Checkbox(label="Enable Ducking?", value=True)
agent_duck_level = gr.Slider(label="Ducking Level (dB attenuation)", minimum=0, maximum=20, step=1, value=10)
agent_run_button = gr.Button("Run Agent", variant="primary")
agent_script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
agent_sound_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
agent_music_suggestions_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
agent_voice_audio = gr.Audio(label="Voice-Over (WAV)", type="filepath")
agent_music_audio = gr.Audio(label="Generated Music (WAV)", type="filepath")
agent_blended_audio = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
agent_run_button.click(fn=run_agent,
inputs=[agent_prompt, agent_llama_model_id, agent_duration, agent_tts_model, agent_music_length, agent_ducking, agent_duck_level],
outputs=[agent_script_output, agent_sound_output, agent_music_suggestions_output, agent_voice_audio, agent_music_audio, agent_blended_audio])
gr.Markdown("""
<div class="footer">
<hr>
Created with ❀️ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
<br>
<small>AI Promo Studio &copy; 2025</small>
</div>
""")
gr.HTML("""
<div style="text-align: center; margin-top: 1rem;">
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" alt="visitor badge"/>
</a>
</div>
""")
demo.launch(debug=True)