Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,796 Bytes
eaef5b0 a765116 d448add d3df06a db46bfb 1c1b50f db46bfb 1c1b50f db8ba25 db46bfb a8a7982 019c404 3168a3e a8a7982 cf3593c 3e34a93 5607a62 a8a7982 3e34a93 a765116 a8a7982 3e34a93 a8a7982 3e34a93 a8a7982 3e34a93 a8a7982 3e34a93 a8a7982 3e34a93 f2c044d a8a7982 2edecf4 f2c044d dfa5d3e 3e34a93 f2c044d a8a7982 a765116 f2c044d a8a7982 cc173f9 3e34a93 a8a7982 3e34a93 a8a7982 3e34a93 cc173f9 a8a7982 cc173f9 a8a7982 cc173f9 a8a7982 cc173f9 a8a7982 cc173f9 a8a7982 cc173f9 a8a7982 cc173f9 b950350 a8a7982 0105281 a8a7982 3e34a93 a8a7982 f2c044d 2edecf4 a8a7982 f2c044d b950350 559ca26 a8a7982 a765116 3e34a93 a8a7982 a765116 3e34a93 f2c044d a8a7982 f2c044d a8a7982 89daa1e 3e34a93 f2c044d a8a7982 f2c044d 17d10a7 a8a7982 cc173f9 a8a7982 cc173f9 3e34a93 eaef5b0 cc173f9 3e34a93 a8a7982 cc173f9 3e34a93 a8a7982 d3df06a 3e34a93 cc173f9 cf3593c a8a7982 2edecf4 a8a7982 3e34a93 a8a7982 f2c044d a8a7982 f2c044d ecc69bf a8a7982 cc173f9 559ca26 eaef5b0 cc173f9 a8a7982 cc173f9 a8a7982 cc173f9 2edecf4 a8a7982 3e34a93 cc173f9 d9bf0f0 a8a7982 eaef5b0 2edecf4 eaef5b0 cc173f9 a8a7982 d3df06a a8a7982 d3df06a cc173f9 d3df06a cc173f9 d3df06a eaef5b0 d3df06a a8a7982 d3df06a eaef5b0 2edecf4 d3df06a a8a7982 eaef5b0 d3df06a a8a7982 2edecf4 d3df06a 2edecf4 cc173f9 2edecf4 a8a7982 2edecf4 a8a7982 eaef5b0 d3df06a cc173f9 2edecf4 cc173f9 a8a7982 2edecf4 a8a7982 eaef5b0 d3df06a 2edecf4 cc173f9 a8a7982 2edecf4 a8a7982 eaef5b0 d3df06a 2edecf4 a8a7982 2edecf4 cc173f9 a8a7982 2edecf4 3fe530b eaef5b0 2edecf4 eaef5b0 2edecf4 eaef5b0 2edecf4 eaef5b0 2edecf4 eaef5b0 2edecf4 eaef5b0 2edecf4 eaef5b0 2edecf4 eaef5b0 a8a7982 d3df06a eaef5b0 d3df06a a8a7982 d3df06a a8a7982 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import os
import re
import torch
import tempfile
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import spaces
import gradio as gr
# Transformers & Models
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration,
)
# Coqui TTS
from TTS.api import TTS
# ---------------------------------------------------------------------
# Load Environment Variables
# ---------------------------------------------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
# ---------------------------------------------------------------------
# Global Model Caches
# ---------------------------------------------------------------------
LLAMA_PIPELINES = {}
MUSICGEN_MODELS = {}
TTS_MODELS = {}
# ---------------------------------------------------------------------
# Utility Function: Clean Text
# ---------------------------------------------------------------------
def clean_text(text: str) -> str:
"""
Removes undesired characters (e.g., asterisks) that might not be recognized by the model's vocabulary.
"""
return re.sub(r'\*', '', text)
# ---------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------
def get_llama_pipeline(model_id: str, token: str):
"""
Returns a cached LLaMA pipeline if available; otherwise, loads it.
"""
if model_id in LLAMA_PIPELINES:
return LLAMA_PIPELINES[model_id]
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
LLAMA_PIPELINES[model_id] = text_pipeline
return text_pipeline
def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
"""
Returns a cached MusicGen model if available; otherwise, loads it.
Uses the 'large' variant for higher quality outputs.
"""
if model_key in MUSICGEN_MODELS:
return MUSICGEN_MODELS[model_key]
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
processor = AutoProcessor.from_pretrained(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
MUSICGEN_MODELS[model_key] = (model, processor)
return model, processor
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
"""
Returns a cached TTS model if available; otherwise, loads it.
"""
if model_name in TTS_MODELS:
return TTS_MODELS[model_name]
tts_model = TTS(model_name)
TTS_MODELS[model_name] = tts_model
return tts_model
# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
"""
Generates a script, sound design suggestions, and music ideas from a user prompt.
Returns a tuple: (voice_script, sound_design, music_suggestions).
"""
try:
text_pipeline = get_llama_pipeline(model_id, token)
system_prompt = (
"You are an expert radio imaging producer specializing in sound design and music. "
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n"
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
)
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
with torch.inference_mode():
result = text_pipeline(
combined_prompt,
max_new_tokens=300,
do_sample=True,
temperature=0.8
)
generated_text = result[0]["generated_text"]
if "Output:" in generated_text:
generated_text = generated_text.split("Output:")[-1].strip()
voice_script = "No voice-over script found."
sound_design = "No sound design suggestions found."
music_suggestions = "No music suggestions found."
if "Voice-Over Script:" in generated_text:
parts = generated_text.split("Voice-Over Script:")
voice_script_part = parts[1]
if "Sound Design Suggestions:" in voice_script_part:
voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
else:
voice_script = voice_script_part.strip()
if "Sound Design Suggestions:" in generated_text:
parts = generated_text.split("Sound Design Suggestions:")
sound_design_part = parts[1]
if "Music Suggestions:" in sound_design_part:
sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
else:
sound_design = sound_design_part.strip()
if "Music Suggestions:" in generated_text:
parts = generated_text.split("Music Suggestions:")
music_suggestions = parts[1].strip()
return voice_script, sound_design, music_suggestions
except Exception as e:
return f"Error generating script: {e}", "", ""
# ---------------------------------------------------------------------
# Voice-Over Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
"""
Generates a voice-over from the provided script using Coqui TTS.
Returns the file path to the generated .wav file.
"""
try:
if not script.strip():
return "Error: No script provided."
cleaned_script = clean_text(script)
tts_model = get_tts_model(tts_model_name)
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
return output_path
except Exception as e:
return f"Error generating voice: {e}"
# ---------------------------------------------------------------------
# Music Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=200)
def generate_music(prompt: str, audio_length: int):
"""
Generates music from the 'facebook/musicgen-large' model based on the prompt.
Returns the file path to the generated .wav file.
"""
try:
if not prompt.strip():
return "Error: No music suggestion provided."
model_key = "facebook/musicgen-large"
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.inference_mode():
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
audio_data = outputs[0, 0].cpu().numpy()
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
write(output_path, 44100, normalized_audio)
return output_path
except Exception as e:
return f"Error generating music: {e}"
# ---------------------------------------------------------------------
# Audio Blending Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
"""
Blends two audio files (voice and music).
Returns the file path to the blended .wav file.
"""
try:
if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
return "Error: Missing audio files for blending."
voice = AudioSegment.from_wav(voice_path)
music = AudioSegment.from_wav(music_path)
voice_len = len(voice)
music_len = len(music)
if music_len < voice_len:
looped_music = AudioSegment.empty()
while len(looped_music) < voice_len:
looped_music += music
music = looped_music
if len(music) > voice_len:
music = music[:voice_len]
final_audio = music.overlay(voice, gain_during_overlay=-duck_level) if ducking else music.overlay(voice)
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
final_audio.export(output_path, format="wav")
return output_path
except Exception as e:
return f"Error blending audio: {e}"
# ---------------------------------------------------------------------
# Agent Function: Orchestrate the Full Workflow
# ---------------------------------------------------------------------
@spaces.GPU(duration=400)
def run_agent(user_prompt: str, llama_model_id: str, duration: int, tts_model_name: str, music_length: int, ducking: bool, duck_level: int):
"""
Runs the full workflow as an agent:
1. Generates a script (voice-over, sound design, and music suggestions).
2. Synthesizes a voice-over.
3. Generates a music track.
4. Blends the voice and music.
Returns all generated components.
"""
voice_script, sound_design, music_suggestions = generate_script(user_prompt, llama_model_id, HF_TOKEN, duration)
voice_file = generate_voice(voice_script, tts_model_name)
music_file = generate_music(music_suggestions, music_length)
blended_file = blend_audio(voice_file, music_file, ducking, duck_level)
return voice_script, sound_design, music_suggestions, voice_file, music_file, blended_file
# ---------------------------------------------------------------------
# Gradio Interface with Enhanced UI
# ---------------------------------------------------------------------
with gr.Blocks(css="""
body {
background: linear-gradient(135deg, #1d1f21, #3a3d41);
color: #f0f0f0;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.header {
text-align: center;
padding: 2rem 1rem;
background: linear-gradient(90deg, #6a11cb, #2575fc);
border-radius: 0 0 20px 20px;
margin-bottom: 2rem;
}
.header h1 {
margin: 0;
font-size: 2.5rem;
}
.header p {
font-size: 1.2rem;
}
.gradio-container {
background: #2e2e2e;
border-radius: 10px;
padding: 1rem;
}
.tab-title {
font-size: 1.1rem;
font-weight: bold;
}
.footer {
text-align: center;
font-size: 0.9em;
margin-top: 2rem;
padding: 1rem;
color: #cccccc;
}
""") as demo:
# Custom Header
with gr.Row(elem_classes="header"):
gr.Markdown("""
<h1>π§ AI Promo Studio</h1>
<p>Your all-in-one AI solution for crafting engaging audio promos.</p>
""")
gr.Markdown("""
Welcome to **AI Promo Studio**! This platform leverages state-of-the-art AI models to help you generate:
- A compelling voice-over script (with sound design and music suggestions),
- A natural-sounding voice-over,
- Custom music tracks,
- And a fully blended audio promo.
""")
with gr.Tabs():
# Tab 1: Script Generation
with gr.Tab("π Script Generation"):
with gr.Row():
user_prompt = gr.Textbox(label="Promo Idea", placeholder="E.g., A 30-second promo for a morning show...", lines=2)
with gr.Row():
llama_model_id = gr.Textbox(label="LLaMA Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct", placeholder="Enter a valid Hugging Face model ID")
duration = gr.Slider(label="Promo Duration (seconds)", minimum=15, maximum=60, step=15, value=30)
generate_script_button = gr.Button("Generate Script", variant="primary")
script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
generate_script_button.click(fn=lambda prompt, model, dur: generate_script(prompt, model, HF_TOKEN, dur),
inputs=[user_prompt, llama_model_id, duration],
outputs=[script_output, sound_design_output, music_suggestion_output])
# Tab 2: Voice Synthesis
with gr.Tab("π€ Voice Synthesis"):
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
selected_tts_model = gr.Dropdown(label="TTS Model",
choices=["tts_models/en/ljspeech/tacotron2-DDC", "tts_models/en/ljspeech/vits", "tts_models/en/sam/tacotron-DDC"],
value="tts_models/en/ljspeech/tacotron2-DDC", multiselect=False)
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
generate_voice_button.click(fn=lambda script, tts: generate_voice(script, tts),
inputs=[script_output, selected_tts_model],
outputs=voice_audio_output)
# Tab 3: Music Production
with gr.Tab("πΆ Music Production"):
gr.Markdown("Generate a custom music track using the MusicGen Large model.")
audio_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512, info="Increase tokens for longer audio (inference time may vary).")
generate_music_button = gr.Button("Generate Music", variant="primary")
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
generate_music_button.click(fn=lambda sugg, length: generate_music(sugg, length),
inputs=[music_suggestion_output, audio_length],
outputs=[music_output])
# Tab 4: Audio Blending
with gr.Tab("ποΈ Audio Blending"):
gr.Markdown("Blend your voice-over and music track. Enable ducking to lower the music during voice segments.")
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
duck_level_slider = gr.Slider(label="Ducking Level (dB attenuation)", minimum=0, maximum=20, step=1, value=10)
blend_button = gr.Button("Blend Voice + Music", variant="primary")
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
blend_button.click(fn=blend_audio,
inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
outputs=blended_output)
# Tab 5: Agent β Full Workflow
with gr.Tab("π€ Agent"):
gr.Markdown("Let the agent handle everything in one go: generate script, synthesize voice, produce music, and blend the final ad.")
with gr.Row():
agent_prompt = gr.Textbox(label="Ad Promo Idea", placeholder="Enter your ad promo concept...", lines=2)
with gr.Row():
agent_llama_model_id = gr.Textbox(label="LLaMA Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct", placeholder="Enter a valid Hugging Face model ID")
agent_duration = gr.Slider(label="Promo Duration (seconds)", minimum=15, maximum=60, step=15, value=30)
with gr.Row():
agent_tts_model = gr.Dropdown(label="TTS Model",
choices=["tts_models/en/ljspeech/tacotron2-DDC", "tts_models/en/ljspeech/vits", "tts_models/en/sam/tacotron-DDC"],
value="tts_models/en/ljspeech/tacotron2-DDC", multiselect=False)
agent_music_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
with gr.Row():
agent_ducking = gr.Checkbox(label="Enable Ducking?", value=True)
agent_duck_level = gr.Slider(label="Ducking Level (dB attenuation)", minimum=0, maximum=20, step=1, value=10)
agent_run_button = gr.Button("Run Agent", variant="primary")
agent_script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
agent_sound_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
agent_music_suggestions_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
agent_voice_audio = gr.Audio(label="Voice-Over (WAV)", type="filepath")
agent_music_audio = gr.Audio(label="Generated Music (WAV)", type="filepath")
agent_blended_audio = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
agent_run_button.click(fn=run_agent,
inputs=[agent_prompt, agent_llama_model_id, agent_duration, agent_tts_model, agent_music_length, agent_ducking, agent_duck_level],
outputs=[agent_script_output, agent_sound_output, agent_music_suggestions_output, agent_voice_audio, agent_music_audio, agent_blended_audio])
gr.Markdown("""
<div class="footer">
<hr>
Created with β€οΈ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
<br>
<small>AI Promo Studio © 2025</small>
</div>
""")
gr.HTML("""
<div style="text-align: center; margin-top: 1rem;">
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" alt="visitor badge"/>
</a>
</div>
""")
demo.launch(debug=True)
|