File size: 18,796 Bytes
eaef5b0
a765116
d448add
d3df06a
 
 
 
 
 
 
 
db46bfb
1c1b50f
 
db46bfb
1c1b50f
db8ba25
db46bfb
a8a7982
019c404
3168a3e
a8a7982
 
 
cf3593c
3e34a93
5607a62
a8a7982
 
 
3e34a93
 
 
 
a765116
 
 
 
 
 
 
 
 
a8a7982
 
 
3e34a93
a8a7982
 
 
3e34a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a7982
 
 
 
3e34a93
 
 
 
 
 
 
 
 
 
a8a7982
 
 
3e34a93
 
 
 
 
 
a8a7982
 
 
3e34a93
 
f2c044d
a8a7982
2edecf4
f2c044d
dfa5d3e
3e34a93
f2c044d
a8a7982
 
 
 
a765116
f2c044d
a8a7982
cc173f9
3e34a93
 
a8a7982
 
3e34a93
a8a7982
3e34a93
cc173f9
a8a7982
 
 
cc173f9
a8a7982
 
 
cc173f9
a8a7982
 
 
 
 
 
 
cc173f9
a8a7982
 
 
 
 
 
 
cc173f9
a8a7982
 
 
cc173f9
a8a7982
cc173f9
b950350
a8a7982
0105281
a8a7982
 
 
3e34a93
a8a7982
f2c044d
2edecf4
a8a7982
f2c044d
b950350
559ca26
a8a7982
a765116
3e34a93
a8a7982
a765116
3e34a93
f2c044d
a8a7982
f2c044d
a8a7982
 
 
89daa1e
3e34a93
f2c044d
a8a7982
 
f2c044d
17d10a7
a8a7982
 
cc173f9
a8a7982
 
cc173f9
3e34a93
eaef5b0
 
cc173f9
3e34a93
a8a7982
cc173f9
3e34a93
a8a7982
d3df06a
3e34a93
 
cc173f9
cf3593c
a8a7982
 
 
2edecf4
a8a7982
3e34a93
a8a7982
f2c044d
a8a7982
 
f2c044d
ecc69bf
a8a7982
 
cc173f9
559ca26
 
eaef5b0
 
cc173f9
a8a7982
 
 
 
 
cc173f9
a8a7982
 
cc173f9
2edecf4
a8a7982
3e34a93
 
cc173f9
d9bf0f0
a8a7982
 
eaef5b0
 
 
 
 
 
 
2edecf4
 
 
 
 
eaef5b0
 
 
 
 
 
cc173f9
a8a7982
d3df06a
a8a7982
d3df06a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc173f9
d3df06a
 
 
 
 
 
 
 
cc173f9
 
 
 
d3df06a
 
 
 
 
 
 
 
 
 
 
 
 
eaef5b0
 
d3df06a
a8a7982
d3df06a
eaef5b0
2edecf4
 
 
 
d3df06a
a8a7982
 
eaef5b0
d3df06a
a8a7982
2edecf4
d3df06a
2edecf4
 
cc173f9
2edecf4
a8a7982
 
2edecf4
 
 
a8a7982
eaef5b0
d3df06a
cc173f9
2edecf4
 
 
cc173f9
a8a7982
2edecf4
 
 
a8a7982
eaef5b0
d3df06a
2edecf4
 
cc173f9
a8a7982
2edecf4
 
 
a8a7982
eaef5b0
d3df06a
2edecf4
a8a7982
2edecf4
cc173f9
a8a7982
2edecf4
 
 
3fe530b
eaef5b0
 
2edecf4
eaef5b0
2edecf4
eaef5b0
2edecf4
 
eaef5b0
2edecf4
 
 
 
eaef5b0
 
2edecf4
eaef5b0
2edecf4
eaef5b0
 
 
 
 
2edecf4
 
 
eaef5b0
a8a7982
d3df06a
 
 
 
eaef5b0
d3df06a
a8a7982
 
 
d3df06a
 
 
 
 
a8a7982
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import os
import re
import torch
import tempfile
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import spaces
import gradio as gr

# Transformers & Models
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    pipeline,
    AutoProcessor,
    MusicgenForConditionalGeneration,
)
# Coqui TTS
from TTS.api import TTS

# ---------------------------------------------------------------------
# Load Environment Variables
# ---------------------------------------------------------------------
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

# ---------------------------------------------------------------------
# Global Model Caches
# ---------------------------------------------------------------------
LLAMA_PIPELINES = {}
MUSICGEN_MODELS = {}
TTS_MODELS = {}

# ---------------------------------------------------------------------
# Utility Function: Clean Text
# ---------------------------------------------------------------------
def clean_text(text: str) -> str:
    """
    Removes undesired characters (e.g., asterisks) that might not be recognized by the model's vocabulary.
    """
    return re.sub(r'\*', '', text)

# ---------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------
def get_llama_pipeline(model_id: str, token: str):
    """
    Returns a cached LLaMA pipeline if available; otherwise, loads it.
    """
    if model_id in LLAMA_PIPELINES:
        return LLAMA_PIPELINES[model_id]
    tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        use_auth_token=token,
        torch_dtype=torch.float16,
        device_map="auto",
        trust_remote_code=True,
    )
    text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
    LLAMA_PIPELINES[model_id] = text_pipeline
    return text_pipeline

def get_musicgen_model(model_key: str = "facebook/musicgen-large"):
    """
    Returns a cached MusicGen model if available; otherwise, loads it.
    Uses the 'large' variant for higher quality outputs.
    """
    if model_key in MUSICGEN_MODELS:
        return MUSICGEN_MODELS[model_key]
    model = MusicgenForConditionalGeneration.from_pretrained(model_key)
    processor = AutoProcessor.from_pretrained(model_key)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)
    MUSICGEN_MODELS[model_key] = (model, processor)
    return model, processor

def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
    """
    Returns a cached TTS model if available; otherwise, loads it.
    """
    if model_name in TTS_MODELS:
        return TTS_MODELS[model_name]
    tts_model = TTS(model_name)
    TTS_MODELS[model_name] = tts_model
    return tts_model

# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
    """
    Generates a script, sound design suggestions, and music ideas from a user prompt.
    Returns a tuple: (voice_script, sound_design, music_suggestions).
    """
    try:
        text_pipeline = get_llama_pipeline(model_id, token)
        system_prompt = (
            "You are an expert radio imaging producer specializing in sound design and music. "
            f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
            "1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n"
            "2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
            "3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
        )
        combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"

        with torch.inference_mode():
            result = text_pipeline(
                combined_prompt,
                max_new_tokens=300,
                do_sample=True,
                temperature=0.8
            )

        generated_text = result[0]["generated_text"]
        if "Output:" in generated_text:
            generated_text = generated_text.split("Output:")[-1].strip()

        voice_script = "No voice-over script found."
        sound_design = "No sound design suggestions found."
        music_suggestions = "No music suggestions found."

        if "Voice-Over Script:" in generated_text:
            parts = generated_text.split("Voice-Over Script:")
            voice_script_part = parts[1]
            if "Sound Design Suggestions:" in voice_script_part:
                voice_script = voice_script_part.split("Sound Design Suggestions:")[0].strip()
            else:
                voice_script = voice_script_part.strip()

        if "Sound Design Suggestions:" in generated_text:
            parts = generated_text.split("Sound Design Suggestions:")
            sound_design_part = parts[1]
            if "Music Suggestions:" in sound_design_part:
                sound_design = sound_design_part.split("Music Suggestions:")[0].strip()
            else:
                sound_design = sound_design_part.strip()

        if "Music Suggestions:" in generated_text:
            parts = generated_text.split("Music Suggestions:")
            music_suggestions = parts[1].strip()

        return voice_script, sound_design, music_suggestions

    except Exception as e:
        return f"Error generating script: {e}", "", ""

# ---------------------------------------------------------------------
# Voice-Over Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"):
    """
    Generates a voice-over from the provided script using Coqui TTS.
    Returns the file path to the generated .wav file.
    """
    try:
        if not script.strip():
            return "Error: No script provided."
        cleaned_script = clean_text(script)
        tts_model = get_tts_model(tts_model_name)
        output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
        tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
        return output_path
    except Exception as e:
        return f"Error generating voice: {e}"

# ---------------------------------------------------------------------
# Music Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=200)
def generate_music(prompt: str, audio_length: int):
    """
    Generates music from the 'facebook/musicgen-large' model based on the prompt.
    Returns the file path to the generated .wav file.
    """
    try:
        if not prompt.strip():
            return "Error: No music suggestion provided."

        model_key = "facebook/musicgen-large"
        musicgen_model, musicgen_processor = get_musicgen_model(model_key)

        device = "cuda" if torch.cuda.is_available() else "cpu"
        inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt")
        inputs = {k: v.to(device) for k, v in inputs.items()}

        with torch.inference_mode():
            outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)

        audio_data = outputs[0, 0].cpu().numpy()
        normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
        output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
        write(output_path, 44100, normalized_audio)
        return output_path

    except Exception as e:
        return f"Error generating music: {e}"

# ---------------------------------------------------------------------
# Audio Blending Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int = 10):
    """
    Blends two audio files (voice and music).
    Returns the file path to the blended .wav file.
    """
    try:
        if not os.path.isfile(voice_path) or not os.path.isfile(music_path):
            return "Error: Missing audio files for blending."

        voice = AudioSegment.from_wav(voice_path)
        music = AudioSegment.from_wav(music_path)
        voice_len = len(voice)
        music_len = len(music)

        if music_len < voice_len:
            looped_music = AudioSegment.empty()
            while len(looped_music) < voice_len:
                looped_music += music
            music = looped_music

        if len(music) > voice_len:
            music = music[:voice_len]

        final_audio = music.overlay(voice, gain_during_overlay=-duck_level) if ducking else music.overlay(voice)
        output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
        final_audio.export(output_path, format="wav")
        return output_path

    except Exception as e:
        return f"Error blending audio: {e}"

# ---------------------------------------------------------------------
# Agent Function: Orchestrate the Full Workflow
# ---------------------------------------------------------------------
@spaces.GPU(duration=400)
def run_agent(user_prompt: str, llama_model_id: str, duration: int, tts_model_name: str, music_length: int, ducking: bool, duck_level: int):
    """
    Runs the full workflow as an agent:
      1. Generates a script (voice-over, sound design, and music suggestions).
      2. Synthesizes a voice-over.
      3. Generates a music track.
      4. Blends the voice and music.
    Returns all generated components.
    """
    voice_script, sound_design, music_suggestions = generate_script(user_prompt, llama_model_id, HF_TOKEN, duration)
    voice_file = generate_voice(voice_script, tts_model_name)
    music_file = generate_music(music_suggestions, music_length)
    blended_file = blend_audio(voice_file, music_file, ducking, duck_level)
    return voice_script, sound_design, music_suggestions, voice_file, music_file, blended_file

# ---------------------------------------------------------------------
# Gradio Interface with Enhanced UI
# ---------------------------------------------------------------------
with gr.Blocks(css="""
    body {
        background: linear-gradient(135deg, #1d1f21, #3a3d41);
        color: #f0f0f0;
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    }
    .header {
        text-align: center;
        padding: 2rem 1rem;
        background: linear-gradient(90deg, #6a11cb, #2575fc);
        border-radius: 0 0 20px 20px;
        margin-bottom: 2rem;
    }
    .header h1 {
        margin: 0;
        font-size: 2.5rem;
    }
    .header p {
        font-size: 1.2rem;
    }
    .gradio-container {
        background: #2e2e2e;
        border-radius: 10px;
        padding: 1rem;
    }
    .tab-title {
        font-size: 1.1rem;
        font-weight: bold;
    }
    .footer {
        text-align: center;
        font-size: 0.9em;
        margin-top: 2rem;
        padding: 1rem;
        color: #cccccc;
    }
""") as demo:

    # Custom Header
    with gr.Row(elem_classes="header"):
        gr.Markdown("""
        <h1>🎧 AI Promo Studio</h1>
        <p>Your all-in-one AI solution for crafting engaging audio promos.</p>
        """)

    gr.Markdown("""
    Welcome to **AI Promo Studio**! This platform leverages state-of-the-art AI models to help you generate:
    - A compelling voice-over script (with sound design and music suggestions),
    - A natural-sounding voice-over,
    - Custom music tracks,
    - And a fully blended audio promo.
    """)

    with gr.Tabs():
        # Tab 1: Script Generation
        with gr.Tab("πŸ“ Script Generation"):
            with gr.Row():
                user_prompt = gr.Textbox(label="Promo Idea", placeholder="E.g., A 30-second promo for a morning show...", lines=2)
            with gr.Row():
                llama_model_id = gr.Textbox(label="LLaMA Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct", placeholder="Enter a valid Hugging Face model ID")
                duration = gr.Slider(label="Promo Duration (seconds)", minimum=15, maximum=60, step=15, value=30)
            generate_script_button = gr.Button("Generate Script", variant="primary")
            script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
            sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
            music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
            generate_script_button.click(fn=lambda prompt, model, dur: generate_script(prompt, model, HF_TOKEN, dur),
                                          inputs=[user_prompt, llama_model_id, duration],
                                          outputs=[script_output, sound_design_output, music_suggestion_output])

        # Tab 2: Voice Synthesis
        with gr.Tab("🎀 Voice Synthesis"):
            gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
            selected_tts_model = gr.Dropdown(label="TTS Model",
                                             choices=["tts_models/en/ljspeech/tacotron2-DDC", "tts_models/en/ljspeech/vits", "tts_models/en/sam/tacotron-DDC"],
                                             value="tts_models/en/ljspeech/tacotron2-DDC", multiselect=False)
            generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
            voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
            generate_voice_button.click(fn=lambda script, tts: generate_voice(script, tts),
                                        inputs=[script_output, selected_tts_model],
                                        outputs=voice_audio_output)

        # Tab 3: Music Production
        with gr.Tab("🎢 Music Production"):
            gr.Markdown("Generate a custom music track using the MusicGen Large model.")
            audio_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512, info="Increase tokens for longer audio (inference time may vary).")
            generate_music_button = gr.Button("Generate Music", variant="primary")
            music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
            generate_music_button.click(fn=lambda sugg, length: generate_music(sugg, length),
                                        inputs=[music_suggestion_output, audio_length],
                                        outputs=[music_output])

        # Tab 4: Audio Blending
        with gr.Tab("🎚️ Audio Blending"):
            gr.Markdown("Blend your voice-over and music track. Enable ducking to lower the music during voice segments.")
            ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
            duck_level_slider = gr.Slider(label="Ducking Level (dB attenuation)", minimum=0, maximum=20, step=1, value=10)
            blend_button = gr.Button("Blend Voice + Music", variant="primary")
            blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
            blend_button.click(fn=blend_audio,
                               inputs=[voice_audio_output, music_output, ducking_checkbox, duck_level_slider],
                               outputs=blended_output)

        # Tab 5: Agent – Full Workflow
        with gr.Tab("πŸ€– Agent"):
            gr.Markdown("Let the agent handle everything in one go: generate script, synthesize voice, produce music, and blend the final ad.")
            with gr.Row():
                agent_prompt = gr.Textbox(label="Ad Promo Idea", placeholder="Enter your ad promo concept...", lines=2)
            with gr.Row():
                agent_llama_model_id = gr.Textbox(label="LLaMA Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct", placeholder="Enter a valid Hugging Face model ID")
                agent_duration = gr.Slider(label="Promo Duration (seconds)", minimum=15, maximum=60, step=15, value=30)
            with gr.Row():
                agent_tts_model = gr.Dropdown(label="TTS Model",
                                              choices=["tts_models/en/ljspeech/tacotron2-DDC", "tts_models/en/ljspeech/vits", "tts_models/en/sam/tacotron-DDC"],
                                              value="tts_models/en/ljspeech/tacotron2-DDC", multiselect=False)
                agent_music_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
            with gr.Row():
                agent_ducking = gr.Checkbox(label="Enable Ducking?", value=True)
                agent_duck_level = gr.Slider(label="Ducking Level (dB attenuation)", minimum=0, maximum=20, step=1, value=10)
            agent_run_button = gr.Button("Run Agent", variant="primary")
            agent_script_output = gr.Textbox(label="Voice-Over Script", lines=5, interactive=False)
            agent_sound_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
            agent_music_suggestions_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
            agent_voice_audio = gr.Audio(label="Voice-Over (WAV)", type="filepath")
            agent_music_audio = gr.Audio(label="Generated Music (WAV)", type="filepath")
            agent_blended_audio = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
            agent_run_button.click(fn=run_agent,
                                   inputs=[agent_prompt, agent_llama_model_id, agent_duration, agent_tts_model, agent_music_length, agent_ducking, agent_duck_level],
                                   outputs=[agent_script_output, agent_sound_output, agent_music_suggestions_output, agent_voice_audio, agent_music_audio, agent_blended_audio])

    gr.Markdown("""
    <div class="footer">
        <hr>
        Created with ❀️ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
        <br>
        <small>AI Promo Studio &copy; 2025</small>
    </div>
    """)
    
    gr.HTML("""
    <div style="text-align: center; margin-top: 1rem;">
        <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
            <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" alt="visitor badge"/>
        </a>
    </div>
    """)

demo.launch(debug=True)