AIPromoStudio / app.py
Bils's picture
Update app.py
019c404 verified
raw
history blame
7.92 kB
import gradio as gr
import os
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import tempfile
import spaces
from TTS.api import TTS
# Load environment variables
load_dotenv()
hf_token = os.getenv("HF_TOKEN")
# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
system_prompt = (
f"You are an expert radio imaging producer specializing in sound design and music. "
f"Based on the user's concept and the selected duration of {duration} seconds, craft a concise, engaging promo script. "
f"Ensure the script fits within the time limit and suggest a matching music style that complements the theme."
)
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script and music suggestion:"
result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
generated_text = result[0]["generated_text"].split("Refined script and music suggestion:")[-1].strip()
if "Music Suggestion:" in generated_text:
script, music_suggestion = generated_text.split("Music Suggestion:")
return script.strip(), music_suggestion.strip()
return generated_text, "No specific music suggestion found."
except Exception as e:
return f"Error generating script: {e}", None
# ---------------------------------------------------------------------
# Voice-Over Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_voice(script: str, speaker: str = "default"):
try:
# Load the TTS model
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", gpu=torch.cuda.is_available())
# Generate the speech audio file
output_path = f"{tempfile.gettempdir()}/generated_voice.wav"
tts.tts_to_file(text=script, file_path=output_path, speaker=speaker)
return output_path
except Exception as e:
return f"Error generating voice-over: {e}"
# ---------------------------------------------------------------------
# Music Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_music(prompt: str, audio_length: int):
try:
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
device = "cuda" if torch.cuda.is_available() else "cpu"
musicgen_model.to(device)
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
audio_data = outputs[0, 0].cpu().numpy()
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
output_path = f"{tempfile.gettempdir()}/generated_music.wav"
write(output_path, 44100, normalized_audio)
return output_path
except Exception as e:
return f"Error generating music: {e}"
# ---------------------------------------------------------------------
# Audio Blending Function with Ducking
# ---------------------------------------------------------------------
def blend_audio(voice_path: str, music_path: str, ducking: bool):
try:
voice = AudioSegment.from_file(voice_path)
music = AudioSegment.from_file(music_path)
if ducking:
music = music - 10 # Lower music volume for ducking
combined = music.overlay(voice)
output_path = f"{tempfile.gettempdir()}/final_promo.wav"
combined.export(output_path, format="wav")
return output_path
except Exception as e:
return f"Error blending audio: {e}"
# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("""
# 🎧 AI Promo Studio with Step-by-Step Script, Voice, Music, and Mixing πŸš€
Generate and mix radio promos effortlessly with AI tools!
""")
with gr.Tabs():
with gr.Tab("Step 1: Generate Script"):
with gr.Row():
user_prompt = gr.Textbox(label="Promo Idea", placeholder="E.g., A 30-second promo for a morning show.")
llama_model_id = gr.Textbox(label="Llama Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct")
duration = gr.Slider(label="Duration (seconds)", minimum=15, maximum=60, step=15, value=30)
generate_script_button = gr.Button("Generate Script")
script_output = gr.Textbox(label="Generated Script")
music_suggestion_output = gr.Textbox(label="Music Suggestion")
generate_script_button.click(
fn=lambda user_prompt, model_id, duration: generate_script(user_prompt, model_id, hf_token, duration),
inputs=[user_prompt, llama_model_id, duration],
outputs=[script_output, music_suggestion_output],
)
with gr.Tab("Step 2: Generate Voice"):
with gr.Row():
speaker = gr.Textbox(label="Voice Style (optional)", placeholder="E.g., male, female, or neutral.")
generate_voice_button = gr.Button("Generate Voice")
voice_output = gr.Audio(label="Generated Voice", type="filepath")
generate_voice_button.click(
fn=lambda script, speaker: generate_voice(script, speaker),
inputs=[script_output, speaker],
outputs=[voice_output],
)
with gr.Tab("Step 3: Generate Music"):
with gr.Row():
audio_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
generate_music_button = gr.Button("Generate Music")
music_output = gr.Audio(label="Generated Music", type="filepath")
generate_music_button.click(
fn=lambda music_suggestion, audio_length: generate_music(music_suggestion, audio_length),
inputs=[music_suggestion_output, audio_length],
outputs=[music_output],
)
with gr.Tab("Step 4: Blend Audio"):
with gr.Row():
ducking = gr.Checkbox(label="Enable Ducking", value=True)
blend_button = gr.Button("Blend Audio")
final_output = gr.Audio(label="Final Promo Audio", type="filepath")
blend_button.click(
fn=lambda voice_path, music_path, ducking: blend_audio(voice_path, music_path, ducking),
inputs=[voice_output, music_output, ducking],
outputs=[final_output],
)
gr.Markdown("""
<hr>
<p style="text-align: center; font-size: 0.9em;">
Created with ❀️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
</p>
""")
demo.launch(debug=True)