File size: 9,376 Bytes
17d10a7
a15d204
d448add
db46bfb
1c1b50f
 
db46bfb
1c1b50f
db8ba25
db46bfb
cf3593c
d9bf0f0
b950350
6aba99a
3168a3e
019c404
8e5f278
3168a3e
ecc69bf
cf3593c
 
 
1c1b50f
b950350
1c1b50f
ecc69bf
b950350
dfa5d3e
db8ba25
 
 
 
 
 
 
 
 
 
fd8d42a
dfa5d3e
e564c8e
fd8d42a
 
 
 
3168a3e
60b6e41
74b6128
 
e564c8e
fd8d42a
74b6128
fd8d42a
 
 
 
 
 
 
b950350
74b6128
b950350
 
66b1260
b950350
 
019c404
b950350
66b1260
 
dfa5d3e
66b1260
dfa5d3e
 
66b1260
dfa5d3e
3b58485
217c4b5
17d10a7
16184b2
 
 
a3b5047
16184b2
217c4b5
 
cf3593c
16184b2
217c4b5
16184b2
 
217c4b5
b950350
16184b2
217c4b5
 
d9bf0f0
16184b2
 
217c4b5
1808e7a
217c4b5
16184b2
cf3593c
b950350
d448add
16184b2
dfa5d3e
66b1260
dfa5d3e
b950350
ecc69bf
66b1260
 
d9bf0f0
66b1260
 
d9bf0f0
 
b950350
ecc69bf
3172dc7
ede9fc5
 
 
 
 
ecc69bf
35e8eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07ea84
 
 
 
35e8eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07ea84
 
 
 
35e8eba
 
 
 
 
 
 
 
 
 
 
8c25665
b950350
d9bf0f0
b950350
 
 
 
1d543ba
 
 
 
 
 
 
3fe530b
35e8eba
ede9fc5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import gradio as gr
import os
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    pipeline,
    AutoProcessor,
    MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import tempfile
import spaces
from TTS.api import TTS
from TTS.utils.synthesizer import Synthesizer

# Load environment variables
load_dotenv()
hf_token = os.getenv("HF_TOKEN")

# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            use_auth_token=token,
            torch_dtype=torch.float16,
            device_map="auto",
            trust_remote_code=True,
        )
        llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)

        # System prompt with clear structure instructions
        system_prompt = (
            f"You are an expert radio imaging producer specializing in sound design and music. "
            f"Based on the user's concept and the selected duration of {duration} seconds, produce the following: "
            f"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'.\n"
            f"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'.\n"
            f"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'."
        )

        combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
        result = llama_pipeline(combined_prompt, max_new_tokens=300, do_sample=True, temperature=0.8)

        # Parsing output
        generated_text = result[0]["generated_text"].split("Output:")[-1].strip()

        # Extract sections based on prefixes
        voice_script = generated_text.split("Voice-Over Script:")[1].split("Sound Design Suggestions:")[0].strip() if "Voice-Over Script:" in generated_text else "No voice-over script found."
        sound_design = generated_text.split("Sound Design Suggestions:")[1].split("Music Suggestions:")[0].strip() if "Sound Design Suggestions:" in generated_text else "No sound design suggestions found."
        music_suggestions = generated_text.split("Music Suggestions:")[1].strip() if "Music Suggestions:" in generated_text else "No music suggestions found."

        return voice_script, sound_design, music_suggestions
    except Exception as e:
        return f"Error generating script: {e}", "", ""

# ---------------------------------------------------------------------
# Voice-Over Generation Function (Inactive)
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_voice(script: str, speaker: str = "default"):
    try:
        # Placeholder for inactive state
        return "Voice-over generation is currently inactive."
    except Exception as e:
        return f"Error: {e}"

# ---------------------------------------------------------------------
# Music Generation Function (facebook/musicgen-medium)
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_music(prompt: str, audio_length: int):
    try:
        # Load facebook/musicgen-medium model
        musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-medium")
        musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-medium")

        # Move the model to the appropriate device (CUDA or CPU)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        musicgen_model.to(device)

        # Prepare inputs
        inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)

        # Generate music
        outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)

        # Process audio data
        audio_data = outputs[0, 0].cpu().numpy()
        normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")

        # Save generated music to a file
        output_path = f"{tempfile.gettempdir()}/musicgen_medium_generated_music.wav"
        write(output_path, 44100, normalized_audio)

        return output_path

    except Exception as e:
        return f"Error generating music: {e}"


# ---------------------------------------------------------------------
# Audio Blending Function with Ducking (Inactive)
# ---------------------------------------------------------------------
def blend_audio(voice_path: str, music_path: str, ducking: bool):
    try:
        # Placeholder for inactive state
        return "Audio blending functionality is currently inactive."
    except Exception as e:
        return f"Error: {e}"


# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
    gr.Markdown("""
        # 🎧 AI Promo Studio 🚀  
        Welcome to **AI Promo Studio**, your one-stop solution for creating stunning and professional radio promos with ease!  
        Whether you're a sound designer, radio producer, or content creator, our AI-driven tools, powered by advanced LLM Llama models, empower you to bring your vision to life in just a few steps.  
    """)

    with gr.Tabs():
        # Step 1: Generate Script
        with gr.Tab("Step 1: Generate Script"):
            with gr.Row():
                user_prompt = gr.Textbox(label="Promo Idea", placeholder="E.g., A 30-second promo for a morning show.")
                llama_model_id = gr.Textbox(label="Llama Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct")
                duration = gr.Slider(label="Duration (seconds)", minimum=15, maximum=60, step=15, value=30)

            generate_script_button = gr.Button("Generate Script")
            script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5)
            sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3)
            music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3)

            generate_script_button.click(
                fn=lambda user_prompt, model_id, duration: generate_script(user_prompt, model_id, hf_token, duration),
                inputs=[user_prompt, llama_model_id, duration],
                outputs=[script_output, sound_design_output, music_suggestion_output],
            )

        # Step 2: Generate Voice
        with gr.Tab("Step 2: Generate Voice"):
            gr.Markdown("""
                **Note:** Voice-over generation is currently inactive. 
                This feature will be available in future updates!
            """)
            with gr.Row():
                speaker = gr.Textbox(label="Voice Style (optional)", placeholder="E.g., male, female, or neutral.")

            generate_voice_button = gr.Button("Generate Voice")
            voice_output = gr.Audio(label="Generated Voice", type="filepath")

            generate_voice_button.click(
                fn=generate_voice,
                inputs=[script_output, speaker],
                outputs=[voice_output],
            )

        # Step 3: Generate Music
        with gr.Tab("Step 3: Generate Music"):
            with gr.Row():
                audio_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512)

            generate_music_button = gr.Button("Generate Music")
            music_output = gr.Audio(label="Generated Music", type="filepath")

            generate_music_button.click(
                fn=lambda music_suggestion, audio_length: generate_music(music_suggestion, audio_length),
                inputs=[music_suggestion_output, audio_length],
                outputs=[music_output],
            )

        # Step 4: Blend Audio
        with gr.Tab("Step 4: Blend Audio"):
            gr.Markdown("""
                **Note:** Audio blending functionality is currently inactive. 
                This feature will be available in future updates!
            """)
            with gr.Row():
                ducking = gr.Checkbox(label="Enable Ducking", value=True)

            blend_button = gr.Button("Blend Audio")
            final_output = gr.Audio(label="Final Promo Audio", type="filepath")

            blend_button.click(
                fn=blend_audio,
                inputs=[voice_output, music_output, ducking],
                outputs=[final_output],
            )

    gr.Markdown("""
        <hr>
        <p style="text-align: center; font-size: 0.9em;">
            Created with ❤️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
        </p>
    """)
    
    # Add visitor badge HTML
    gr.HTML("""
        <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
            <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" />
        </a>
    """)

demo.launch(debug=True)