|
import pandas as pd |
|
import streamlit as st |
|
import csv |
|
import io |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from pre import preprocess_csv, load_data, fill_missing_data |
|
|
|
|
|
def double_main(uploaded_file1,uploaded_file2): |
|
|
|
|
|
if uploaded_file1 is not None and uploaded_file2 is not None: |
|
|
|
filet_1 = uploaded_file1.read() |
|
processed_output_1 = preprocess_csv(filet_1) |
|
processed_file_1 = io.StringIO(processed_output_1.getvalue()) |
|
data_1 = load_data(processed_file_1) |
|
|
|
filet_2 = uploaded_file2.read() |
|
processed_output_2 = preprocess_csv(filet_2) |
|
processed_file_2 = io.StringIO(processed_output_2.getvalue()) |
|
data_2 = load_data(processed_file_2) |
|
|
|
data_1 = fill_missing_data(data_1, 4, 0) |
|
data_1['Start datetime'] = pd.to_datetime(data_1['Start datetime'], errors='coerce') |
|
data_1['End datetime'] = pd.to_datetime(data_1['End datetime'], errors='coerce') |
|
data_1['Time spent'] = (data_1['End datetime'] - data_1['Start datetime']).dt.total_seconds() |
|
|
|
data_2 = fill_missing_data(data_2, 4, 0) |
|
data_2['Start datetime'] = pd.to_datetime(data_2['Start datetime'], errors='coerce') |
|
data_2['End datetime'] = pd.to_datetime(data_2['End datetime'], errors='coerce') |
|
data_2['Time spent'] = (data_2['End datetime'] - data_2['Start datetime']).dt.total_seconds() |
|
|
|
|
|
if data_1['Start datetime'].min() < data_2['Start datetime'].min(): |
|
older_df = data_1 |
|
newer_df = data_2 |
|
else: |
|
older_df = data_2 |
|
newer_df = data_1 |
|
|
|
older_df['Time spent'] = pd.to_datetime(older_df['Time spent'], unit='s').dt.strftime('%M:%S') |
|
newer_df['Time spent'] = pd.to_datetime(newer_df['Time spent'], unit='s').dt.strftime('%M:%S') |
|
|
|
older_datetime = older_df['Start datetime'].min() |
|
newer_datetime = newer_df['Start datetime'].min() |
|
st.write(f"The older csv started on {older_datetime}") |
|
st.write(f"The newer csv started on {newer_datetime}") |
|
|
|
|
|
merged_df = pd.merge(older_df, newer_df, on=['Functional area', 'Scenario name'], suffixes=('_old', '_new')) |
|
|
|
|
|
fail_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'FAILED')] |
|
|
|
st.markdown("### Consistent Failures(previously failing, now failing)") |
|
fail_count = len(fail_to_fail_scenarios) |
|
st.write(f"Failing scenarios Count: {fail_count}") |
|
|
|
columns_to_display = ['Functional area', 'Scenario name', 'Error message_old', 'Error message_new'] |
|
|
|
st.write(fail_to_fail_scenarios[columns_to_display]) |
|
|
|
|
|
pass_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'PASSED') & (merged_df['Status_new'] == 'FAILED')] |
|
|
|
st.markdown("### New Failures(previously passing, now failing)") |
|
pass_fail_count = len(pass_to_fail_scenarios) |
|
st.write(f"Failing scenarios Count: {pass_fail_count}") |
|
|
|
columns_to_display = ['Functional area', 'Scenario name', 'Error message_new', 'Time spent_old','Time spent_new',] |
|
|
|
st.write(pass_to_fail_scenarios[columns_to_display]) |
|
|
|
|
|
fail_to_pass_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'PASSED')] |
|
|
|
|
|
st.markdown("### New Failures(previously failing, now passing)") |
|
pass_count = len(fail_to_pass_scenarios) |
|
st.write(f"Passing scenarios Count: {pass_count}") |
|
|
|
columns_to_display = ['Functional area', 'Scenario name', 'Error message_old', 'Time spent_old','Time spent_new',] |
|
|
|
st.write(fail_to_pass_scenarios[columns_to_display]) |
|
pass |