Spaces:
Sleeping
Sleeping
Commit
·
a95b240
1
Parent(s):
69508f6
Upload 2 files
Browse files
pre.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import csv
|
4 |
+
import io
|
5 |
+
|
6 |
+
def preprocess_csv(input_bytes):
|
7 |
+
text = input_bytes.decode() # Decode bytes to text
|
8 |
+
output = io.StringIO()
|
9 |
+
writer = csv.writer(output)
|
10 |
+
|
11 |
+
for row in csv.reader(io.StringIO(text)): # Read text as csv
|
12 |
+
if len(row) > 5:
|
13 |
+
row = row[0:5] + [','.join(row[5:])] # Combine extra fields into one
|
14 |
+
writer.writerow(row)
|
15 |
+
|
16 |
+
output.seek(0) # go to the start of the StringIO object
|
17 |
+
return output
|
18 |
+
|
19 |
+
def load_data(file):
|
20 |
+
column_names = [
|
21 |
+
'Functional area',
|
22 |
+
'Scenario name',
|
23 |
+
'Start datetime',
|
24 |
+
'End datetime',
|
25 |
+
'Status',
|
26 |
+
'Error message'
|
27 |
+
]
|
28 |
+
data = pd.read_csv(file, header=None, names=column_names)
|
29 |
+
return data
|
30 |
+
|
31 |
+
def fill_missing_data(data, column_index, value):
|
32 |
+
data.iloc[:, column_index] = data.iloc[:, column_index].fillna(value)
|
33 |
+
return data
|
second.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import csv
|
4 |
+
import io
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
from pre import preprocess_csv, load_data, fill_missing_data
|
8 |
+
|
9 |
+
|
10 |
+
def double_main(uploaded_file1,uploaded_file2):
|
11 |
+
# st.title('Single CSV Analyzer')
|
12 |
+
|
13 |
+
if uploaded_file1 is not None and uploaded_file2 is not None:
|
14 |
+
# Process the csv files with header
|
15 |
+
filet_1 = uploaded_file1.read()
|
16 |
+
processed_output_1 = preprocess_csv(filet_1)
|
17 |
+
processed_file_1 = io.StringIO(processed_output_1.getvalue())
|
18 |
+
data_1 = load_data(processed_file_1)
|
19 |
+
|
20 |
+
filet_2 = uploaded_file2.read()
|
21 |
+
processed_output_2 = preprocess_csv(filet_2)
|
22 |
+
processed_file_2 = io.StringIO(processed_output_2.getvalue())
|
23 |
+
data_2 = load_data(processed_file_2)
|
24 |
+
|
25 |
+
data_1 = fill_missing_data(data_1, 4, 0)
|
26 |
+
data_1['Start datetime'] = pd.to_datetime(data_1['Start datetime'], errors='coerce')
|
27 |
+
data_1['End datetime'] = pd.to_datetime(data_1['End datetime'], errors='coerce')
|
28 |
+
data_1['Time spent'] = (data_1['End datetime'] - data_1['Start datetime']).dt.total_seconds()
|
29 |
+
|
30 |
+
data_2 = fill_missing_data(data_2, 4, 0)
|
31 |
+
data_2['Start datetime'] = pd.to_datetime(data_2['Start datetime'], errors='coerce')
|
32 |
+
data_2['End datetime'] = pd.to_datetime(data_2['End datetime'], errors='coerce')
|
33 |
+
data_2['Time spent'] = (data_2['End datetime'] - data_2['Start datetime']).dt.total_seconds()
|
34 |
+
|
35 |
+
# Determine which DataFrame is older
|
36 |
+
if data_1['Start datetime'].min() < data_2['Start datetime'].min():
|
37 |
+
older_df = data_1
|
38 |
+
newer_df = data_2
|
39 |
+
else:
|
40 |
+
older_df = data_2
|
41 |
+
newer_df = data_1
|
42 |
+
|
43 |
+
older_df['Time spent'] = pd.to_datetime(older_df['Time spent'], unit='s').dt.strftime('%M:%S')
|
44 |
+
newer_df['Time spent'] = pd.to_datetime(newer_df['Time spent'], unit='s').dt.strftime('%M:%S')
|
45 |
+
|
46 |
+
older_datetime = older_df['Start datetime'].min()
|
47 |
+
newer_datetime = newer_df['Start datetime'].min()
|
48 |
+
st.write(f"The older csv started on {older_datetime}")
|
49 |
+
st.write(f"The newer csv started on {newer_datetime}")
|
50 |
+
|
51 |
+
# Merge dataframes on 'scenario name'
|
52 |
+
merged_df = pd.merge(older_df, newer_df, on=['Functional area', 'Scenario name'], suffixes=('_old', '_new'))
|
53 |
+
|
54 |
+
# Filter scenarios that were failing and are still failing
|
55 |
+
fail_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'FAILED')]
|
56 |
+
|
57 |
+
st.markdown("### Consistent Failures(previously failing, now failing)")
|
58 |
+
fail_count = len(fail_to_fail_scenarios)
|
59 |
+
st.write(f"Failing scenarios Count: {fail_count}")
|
60 |
+
# Select columns for display
|
61 |
+
columns_to_display = ['Functional area', 'Scenario name', 'Error message_old', 'Error message_new']
|
62 |
+
# Display the selected columns using st.write
|
63 |
+
st.write(fail_to_fail_scenarios[columns_to_display])
|
64 |
+
|
65 |
+
# Filter scenarios that were passing and now failing
|
66 |
+
pass_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'PASSED') & (merged_df['Status_new'] == 'FAILED')]
|
67 |
+
|
68 |
+
st.markdown("### New Failures(previously passing, now failing)")
|
69 |
+
pass_fail_count = len(pass_to_fail_scenarios)
|
70 |
+
st.write(f"Failing scenarios Count: {pass_fail_count}")
|
71 |
+
# Select columns for display
|
72 |
+
columns_to_display = ['Functional area', 'Scenario name', 'Error message_new', 'Time spent_old','Time spent_new',]
|
73 |
+
# Display the selected columns using st.write
|
74 |
+
st.write(pass_to_fail_scenarios[columns_to_display])
|
75 |
+
|
76 |
+
# Filter scenarios that were failing and now passing
|
77 |
+
fail_to_pass_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'PASSED')]
|
78 |
+
|
79 |
+
# Display filtered dataframe in Streamlit app
|
80 |
+
st.markdown("### New Failures(previously failing, now passing)")
|
81 |
+
pass_count = len(fail_to_pass_scenarios)
|
82 |
+
st.write(f"Passing scenarios Count: {pass_count}")
|
83 |
+
# Select columns for display
|
84 |
+
columns_to_display = ['Functional area', 'Scenario name', 'Error message_old', 'Time spent_old','Time spent_new',]
|
85 |
+
# Display the selected columns using st.write
|
86 |
+
st.write(fail_to_pass_scenarios[columns_to_display])
|
87 |
+
pass
|