Spaces:
Sleeping
Sleeping
File size: 7,744 Bytes
4be0291 39bc853 4be0291 66b3608 a5c9751 7fed2df 4be0291 8b4657a 7de92cf 9d130b9 740db7c 8d1efeb 7c80b06 7fc8447 8b4657a 0daea72 8b4657a 38a7b6c 3d288de 8b4657a 4be0291 0daea72 4be0291 dab5624 2f16af2 5e67151 2f16af2 0daea72 4be0291 0daea72 4be0291 a5c9751 4be0291 a5c9751 4be0291 0daea72 4be0291 a5c9751 4be0291 dab5624 2f16af2 4be0291 0daea72 dab5624 4be0291 0daea72 4be0291 0daea72 4be0291 78a95f5 0e28843 4be0291 0e28843 4be0291 0daea72 4be0291 1df37aa 4be0291 8b4657a 1df37aa 4be0291 1df37aa 4be0291 8b4657a 018a266 8b4657a 1df37aa 4be0291 8b4657a 4be0291 8b4657a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import os
import getpass
import requests
import sentence_transformers
import streamlit as st
VECTOR_DB ="bbf2ef09-875b-4737-a793-499409a108b0"
IBM_API_KEY = os.getenv("IBM_API_KEY")
IBM_URL_TOKEN = "https://iam.cloud.ibm.com/identity/token"
IBM_URL_CHAT = "https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-10-25"
if "messages" not in st.session_state:
st.session_state.messages = []
if "user_input" not in st.session_state:
st.session_state.user_input = ""
# Load the banner image from the same directory
st.image("banner_policy.jpg", use_container_width=True)
##############################################
##
## IBM API
##
##############################################
def IBM_token():
# Define the headers
headers = {
"Content-Type": "application/x-www-form-urlencoded"
}
# Define the data payload
data = {
"grant_type": "urn:ibm:params:oauth:grant-type:apikey",
"apikey": IBM_API_KEY
}
# Make the POST request
response = requests.post(IBM_URL_TOKEN, headers=headers, data=data)
st.session_state.IBM_ACCESS_TOKEN = response.json().get("access_token", "")
def IBM_chat (messages):
body = {
"model_id": "ibm/granite-3-8b-instruct",
"project_id": os.getenv("IBM_PROJECT_ID"),
"messages": messages,
"max_tokens": 10000,
"temperature": 0.3,
"time_limit": 20000
}
headers = {
"Accept": "application/json",
"Content-Type": "application/json",
"Authorization": "Bearer " + st.session_state.IBM_ACCESS_TOKEN
}
response = requests.post(
IBM_URL_CHAT,
headers=headers,
json=body
)
if response.status_code != 200:
raise Exception("Non-200 response: " + str(response.text))
response = response.json()
return response["choices"][0]["message"]["content"]
def get_credentials():
return {
"url" : "https://us-south.ml.cloud.ibm.com",
"apikey" : os.getenv("IBM_API_KEY")
}
from ibm_watsonx_ai.client import APIClient
from ibm_watsonx_ai.foundation_models.embeddings.sentence_transformer_embeddings import SentenceTransformerEmbeddings
if "client" not in st.session_state:
with st.spinner("β³ Waking the wizard ..."):
IBM_token()
wml_credentials = get_credentials()
st.session_state.client = APIClient(credentials=wml_credentials, project_id=os.getenv("IBM_PROJECT_ID"))
vector_index_details = st.session_state.client.data_assets.get_details(VECTOR_DB)
st.session_state.vector_index_properties = vector_index_details["entity"]["vector_index"]
st.session_state.top_n = 20 if st.session_state.vector_index_properties["settings"].get("rerank") else int(st.session_state.vector_index_properties["settings"]["top_k"])
st.session_state.emb = SentenceTransformerEmbeddings('sentence-transformers/all-MiniLM-L6-v2')
def rerank( client, documents, query, top_n ):
from ibm_watsonx_ai.foundation_models import Rerank
reranker = Rerank(
model_id="cross-encoder/ms-marco-minilm-l-12-v2",
api_client=client,
params={
"return_options": {
"top_n": top_n
},
"truncate_input_tokens": 512
}
)
reranked_results = reranker.generate(query=query, inputs=documents)["results"]
new_documents = []
for result in reranked_results:
result_index = result["index"]
new_documents.append(documents[result_index])
return new_documents
import subprocess
import gzip
import json
import chromadb
import random
import string
def hydrate_chromadb():
data = st.session_state.client.data_assets.get_content(VECTOR_DB)
content = gzip.decompress(data)
stringified_vectors = str(content, "utf-8")
vectors = json.loads(stringified_vectors)
chroma_client = chromadb.PersistentClient(path="./chroma_db")
# make sure collection is empty if it already existed
collection_name = "my_collection"
try:
collection = chroma_client.delete_collection(name=collection_name)
except:
print("Collection didn't exist - nothing to do.")
collection = chroma_client.create_collection(name=collection_name)
vector_embeddings = []
vector_documents = []
vector_metadatas = []
vector_ids = []
for vector in vectors:
vector_embeddings.append(vector["embedding"])
vector_documents.append(vector["content"])
metadata = vector["metadata"]
lines = metadata["loc"]["lines"]
clean_metadata = {}
clean_metadata["asset_id"] = metadata["asset_id"]
clean_metadata["asset_name"] = metadata["asset_name"]
clean_metadata["url"] = metadata["url"]
clean_metadata["from"] = lines["from"]
clean_metadata["to"] = lines["to"]
vector_metadatas.append(clean_metadata)
asset_id = vector["metadata"]["asset_id"]
random_string = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
id = "{}:{}-{}-{}".format(asset_id, lines["from"], lines["to"], random_string)
vector_ids.append(id)
collection.add(
embeddings=vector_embeddings,
documents=vector_documents,
metadatas=vector_metadatas,
ids=vector_ids
)
return collection
if "chroma_collection" not in st.session_state:
with st.spinner("β³ Dusting off the scroll books ..."):
st.session_state.chroma_collection = hydrate_chromadb()
def proximity_search( question ):
query_vectors = st.session_state.emb.embed_query(question)
query_result = st.session_state.chroma_collection.query(
query_embeddings=query_vectors,
n_results=st.session_state.top_n,
include=["documents", "metadatas", "distances"]
)
documents = list(reversed(query_result["documents"][0]))
if st.session_state.vector_index_properties["settings"].get("rerank"):
documents = rerank(st.session_state.client, documents, question, st.session_state.vector_index_properties["settings"]["top_k"])
return "\n".join(documents)
# Streamlit UI
st.title("π Synergy Scroll")
st.subheader("AI-Powered Project & Policy Matching")
st.write("Explore the Lab Lab Library to find relevant past projects that align with your policy or new initiative.")
# Suggested search queries as buttons
col1, col2 = st.columns(2)
with col1:
if st.button("Solarpunk projects to connect with"):
st.session_state["user_input"] = "Solarpunk projects to connect with"
with col2:
if st.button("How to implement DEI?"):
st.session_state["user_input"] = "How to implement DEI?"
# User input in Streamlit
user_input = st.text_input("Describe your policy or project to find relevant Lab Lab projects...")
if st.session_state["user_input"]:
# Display user message
#st.chat_message("user").markdown(st.session_state["user_input"])
grounding = proximity_search(st.session_state["user_input"])
# add the submissions as context (only in prompt, not in history)
prompt = st.session_state["user_input"] + ". For a project share the image as markdown and mention the url as well. The context for the question: " + grounding;
messages = st.session_state.messages.copy()
messages.append({"role": "user", "content": prompt})
st.session_state.messages.append({"role": "user", "content": st.session_state["user_input"]})
# Get response from IBM
with st.spinner("Thinking..."):
assistant_reply = IBM_chat(messages)
# Display assistant message
st.chat_message("assistant").markdown(assistant_reply)
st.session_state.messages.append({"role": "assistant", "content": assistant_reply})
|