Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from rag import RAGinit, RAG_proximity_search
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
client, model, emb, chroma_collection, vector_index_properties, top_n = load_resources()
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import getpass
|
3 |
+
|
4 |
+
import sentence_transformers
|
5 |
+
|
6 |
import streamlit as st
|
|
|
7 |
|
8 |
+
VECTOR_DB ="c8af7dfa-bcad-46e5-b69d-cd85ce9315d1"
|
9 |
+
|
10 |
+
def get_credentials():
|
11 |
+
return {
|
12 |
+
"url" : "https://us-south.ml.cloud.ibm.com",
|
13 |
+
"apikey" : os.getenv("IBM_API_KEY")
|
14 |
+
}
|
15 |
+
|
16 |
+
model_id = "ibm/granite-3-8b-instruct"
|
17 |
+
|
18 |
+
parameters = {
|
19 |
+
"decoding_method": "greedy",
|
20 |
+
"max_new_tokens": 900,
|
21 |
+
"min_new_tokens": 0,
|
22 |
+
"repetition_penalty": 1
|
23 |
+
}
|
24 |
+
|
25 |
+
project_id = os.getenv("IBM_PROJECT_ID")
|
26 |
+
space_id = os.getenv("IBM_SPACE_ID")
|
27 |
+
|
28 |
+
from ibm_watsonx_ai.foundation_models import ModelInference
|
29 |
+
|
30 |
+
model = ModelInference(
|
31 |
+
model_id = model_id,
|
32 |
+
params = parameters,
|
33 |
+
credentials = get_credentials(),
|
34 |
+
project_id = project_id,
|
35 |
+
space_id = space_id
|
36 |
+
)
|
37 |
+
|
38 |
+
from ibm_watsonx_ai.client import APIClient
|
39 |
+
|
40 |
+
wml_credentials = get_credentials()
|
41 |
+
client = APIClient(credentials=wml_credentials, project_id=project_id) #, space_id=space_id)
|
42 |
+
|
43 |
+
vector_index_id = VECTOR_DB
|
44 |
+
vector_index_details = client.data_assets.get_details(vector_index_id)
|
45 |
+
vector_index_properties = vector_index_details["entity"]["vector_index"]
|
46 |
+
|
47 |
+
top_n = 20 if vector_index_properties["settings"].get("rerank") else int(vector_index_properties["settings"]["top_k"])
|
48 |
+
|
49 |
+
def rerank( client, documents, query, top_n ):
|
50 |
+
from ibm_watsonx_ai.foundation_models import Rerank
|
51 |
+
|
52 |
+
reranker = Rerank(
|
53 |
+
model_id="cross-encoder/ms-marco-minilm-l-12-v2",
|
54 |
+
api_client=client,
|
55 |
+
params={
|
56 |
+
"return_options": {
|
57 |
+
"top_n": top_n
|
58 |
+
},
|
59 |
+
"truncate_input_tokens": 512
|
60 |
+
}
|
61 |
+
)
|
62 |
+
|
63 |
+
reranked_results = reranker.generate(query=query, inputs=documents)["results"]
|
64 |
+
|
65 |
+
new_documents = []
|
66 |
+
|
67 |
+
for result in reranked_results:
|
68 |
+
result_index = result["index"]
|
69 |
+
new_documents.append(documents[result_index])
|
70 |
+
|
71 |
+
return new_documents
|
72 |
+
|
73 |
+
from ibm_watsonx_ai.foundation_models.embeddings.sentence_transformer_embeddings import SentenceTransformerEmbeddings
|
74 |
|
75 |
+
emb = SentenceTransformerEmbeddings('sentence-transformers/all-MiniLM-L6-v2')
|
|
|
76 |
|
77 |
+
import subprocess
|
78 |
+
import gzip
|
79 |
+
import json
|
80 |
+
import chromadb
|
81 |
+
import random
|
82 |
+
import string
|
83 |
|
84 |
+
def hydrate_chromadb():
|
85 |
+
data = client.data_assets.get_content(vector_index_id)
|
86 |
+
content = gzip.decompress(data)
|
87 |
+
stringified_vectors = str(content, "utf-8")
|
88 |
+
vectors = json.loads(stringified_vectors)
|
89 |
|
90 |
+
#chroma_client = chromadb.Client()
|
91 |
+
#chroma_client = chromadb.InMemoryClient()
|
92 |
+
chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
93 |
+
|
94 |
+
# make sure collection is empty if it already existed
|
95 |
+
collection_name = "my_collection"
|
96 |
+
try:
|
97 |
+
collection = chroma_client.delete_collection(name=collection_name)
|
98 |
+
except:
|
99 |
+
print("Collection didn't exist - nothing to do.")
|
100 |
+
collection = chroma_client.create_collection(name=collection_name)
|
101 |
+
|
102 |
+
vector_embeddings = []
|
103 |
+
vector_documents = []
|
104 |
+
vector_metadatas = []
|
105 |
+
vector_ids = []
|
106 |
+
|
107 |
+
for vector in vectors:
|
108 |
+
vector_embeddings.append(vector["embedding"])
|
109 |
+
vector_documents.append(vector["content"])
|
110 |
+
metadata = vector["metadata"]
|
111 |
+
lines = metadata["loc"]["lines"]
|
112 |
+
clean_metadata = {}
|
113 |
+
clean_metadata["asset_id"] = metadata["asset_id"]
|
114 |
+
clean_metadata["asset_name"] = metadata["asset_name"]
|
115 |
+
clean_metadata["url"] = metadata["url"]
|
116 |
+
clean_metadata["from"] = lines["from"]
|
117 |
+
clean_metadata["to"] = lines["to"]
|
118 |
+
vector_metadatas.append(clean_metadata)
|
119 |
+
asset_id = vector["metadata"]["asset_id"]
|
120 |
+
random_string = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
|
121 |
+
id = "{}:{}-{}-{}".format(asset_id, lines["from"], lines["to"], random_string)
|
122 |
+
vector_ids.append(id)
|
123 |
+
|
124 |
+
collection.add(
|
125 |
+
embeddings=vector_embeddings,
|
126 |
+
documents=vector_documents,
|
127 |
+
metadatas=vector_metadatas,
|
128 |
+
ids=vector_ids
|
129 |
+
)
|
130 |
+
return collection
|
131 |
+
|
132 |
+
chroma_collection = hydrate_chromadb()
|
133 |
+
|
134 |
+
def proximity_search( question ):
|
135 |
+
query_vectors = emb.embed_query(question)
|
136 |
+
query_result = chroma_collection.query(
|
137 |
+
query_embeddings=query_vectors,
|
138 |
+
n_results=top_n,
|
139 |
+
include=["documents", "metadatas", "distances"]
|
140 |
+
)
|
141 |
+
|
142 |
+
documents = list(reversed(query_result["documents"][0]))
|
143 |
+
|
144 |
+
if vector_index_properties["settings"].get("rerank"):
|
145 |
+
documents = rerank(client, documents, question, vector_index_properties["settings"]["top_k"])
|
146 |
+
|
147 |
+
return "\n".join(documents)
|
148 |
+
|
149 |
+
# Streamlit UI
|
150 |
+
st.title("π IBM Watson RAG Chatbot")
|
151 |
+
|
152 |
+
# User input in Streamlit
|
153 |
+
question = st.text_input("Enter your question:")
|
154 |
+
|
155 |
+
if question:
|
156 |
+
# Retrieve relevant grounding context
|
157 |
+
grounding = proximity_search(question)
|
158 |
+
|
159 |
+
# Format the question with retrieved context
|
160 |
+
formatted_question = f"""<|start_of_role|>user<|end_of_role|>Use the following pieces of context to answer the question.
|
161 |
+
{grounding}
|
162 |
+
Question: {question}<|end_of_text|>
|
163 |
+
<|start_of_role|>assistant<|end_of_role|>"""
|
164 |
+
|
165 |
+
# Placeholder for a prompt input (Optional)
|
166 |
+
prompt_input = "" # Set this dynamically if needed
|
167 |
+
prompt = f"""{prompt_input}{formatted_question}"""
|
168 |
+
|
169 |
+
# Simulated AI response (Replace with actual model call)
|
170 |
+
generated_response = f"AI Response based on: {prompt}"
|
171 |
+
|
172 |
+
# Display results
|
173 |
+
st.subheader("π Retrieved Context")
|
174 |
+
st.write(grounding)
|
175 |
+
|
176 |
+
st.subheader("π€ AI Response")
|
177 |
+
st.write(generated_response)
|