Spaces:
Sleeping
Sleeping
File size: 8,505 Bytes
a8c8bb7 05d9771 a8c8bb7 1c4573f 097e8db 2557ecb 097e8db a8c8bb7 1c4573f a8c8bb7 1c4573f ab96498 e9ef9ac ab96498 e9ef9ac ab96498 e9ef9ac ab96498 713f3f3 ab96498 5a74463 d3bc4dd ab96498 5a74463 ab96498 5a74463 a8c8bb7 ab96498 d3bc4dd ab96498 ae67ec6 ab96498 1c4573f ab96498 a8c8bb7 ab96498 2557ecb 1c4573f 713f3f3 a8c8bb7 713f3f3 a3c18bc a8c8bb7 a3c18bc 1c4573f a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc a8c8bb7 a3c18bc 1c4573f 2557ecb a3c18bc 2557ecb a3c18bc 5a74463 1c4573f a8c8bb7 1c4573f 5a74463 a3c18bc 1c4573f a8c8bb7 5a74463 e9ef9ac 5a74463 e9ef9ac 5a74463 e9ef9ac 5a74463 a8c8bb7 1c4573f a8c8bb7 5a74463 a8c8bb7 1c4573f a8c8bb7 5a74463 a3c18bc 5a74463 a3c18bc 5a74463 a8c8bb7 60e69dd a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import numpy as np
from scipy.io.wavfile import write
from scipy.signal import find_peaks
from scipy.fft import fft
from tqdm import tqdm
import matplotlib.pyplot as plt
from scipy.io.wavfile import read
from scipy import signal
import gradio as gr
import reedsolo
import wavio
from scipy.signal import butter, lfilter
# ---------------Parameters--------------- #
input_file = 'input_text.wav'
output_file = 'output_filtered_receiver.wav'
low_frequency = 18000
high_frequency = 19000
bit_duration = 0.007
sample_rate = 44100
amplitude_scaling_factor = 10.0
# -----------------Filter----------------- #
def butter_bandpass(sr, order=5):
"""
This function designs a Butterworth bandpass filter.
Parameters:
sr (int): The sample rate of the audio.
order (int): The order of the filter.
Returns:
tuple: The filter coefficients `b` and `a`.
"""
# Calculate the Nyquist frequency
nyquist = 0.5 * sr
# Normalize the cutoff frequencies
low = low_frequency / nyquist
high = high_frequency / nyquist
# Design the Butterworth bandpass filter
coefficient = butter(order, [low, high], btype='band')
# Extract the filter coefficients
b = coefficient[0]
a = coefficient[1]
return b, a
def butter_bandpass_filter(data, sr, order=5):
"""
This function applies the Butterworth bandpass filter to a given data.
Parameters:
data (array): The audio data to be filtered.
sr (int): The sample rate of the audio.
order (int): The order of the filter.
Returns:
array: The filtered audio data.
"""
# Get the filter coefficients
b, a = butter_bandpass(sr, order=order)
# Apply the filter to the data
y = lfilter(b, a, data)
return y
def filtered():
"""
This function reads an audio file, applies the bandpass filter to the audio data,
and then writes the filtered data to an output file.
Returns:
str: A success message if the audio is filtered correctly, otherwise an error message.
"""
try:
input_file = 'input_text.wav'
output_file = 'output_filtered_receiver.wav'
# Read the audio data from the input file
sr, data = read(input_file)
# Apply the bandpass filter to the audio data
filtered_data = butter_bandpass_filter(data, sr)
# Write the filtered data to the output file
write(output_file, sr, np.int16(filtered_data))
return "Filtered Audio Generated"
except Exception as e:
# If an error occurs, return an error message
return f"Error: {str(e)}"
# -----------------Record----------------- #
def record(audio):
"""
This function records audio and writes it to a .wav file.
Parameters:
audio (tuple): A tuple containing the sample rate and the audio data.
Returns:
str: A success message if the audio is recorded correctly, otherwise an error message.
"""
try:
# Check if the audio tuple contains exactly two elements
if len(audio) != 2:
return f"Error: Expected a tuple with 2 elements, but got {len(audio)}"
# Unpack the sample rate and data from the audio tuple
sr, data = audio
# Write the audio data to a .wav file
wavio.write("recorded.wav", data, sr)
# Call the filtered function to apply the bandpass filter to the audio data
filtered()
# Return a success message
return f"Audio receive correctly"
except Exception as e:
# If an error occurs, return an error message
return f"Error: {str(e)}"
# -----------------Frame----------------- #
def calculate_snr(data, start, end, target_frequency):
segment = data[start:end]
spectrum = np.fft.fft(segment)
frequencies = np.fft.fftfreq(len(spectrum), 1 / sample_rate)
target_index = np.abs(frequencies - target_frequency).argmin()
amplitude = np.abs(spectrum[target_index])
noise_segment = data[100:1000 + len(segment)]
noise_spectrum = np.fft.fft(noise_segment)
noise_amplitude = np.abs(noise_spectrum[target_index])
snr = 10 * np.log10(amplitude / noise_amplitude)
return snr
def frame_analyse(filename):
sr, y = read(filename)
first_part_start = 0
first_part_end = len(y) // 2
second_part_start = len(y) // 2
second_part_end = len(y)
segment_length = 256
overlap_size = 128
f, t, sxx = signal.spectrogram(y, sr, nperseg=segment_length, noverlap=overlap_size)
plt.figure()
plt.pcolormesh(t, f, sxx, shading="gouraud")
plt.xlabel("Time [s]")
plt.ylabel("Frequency [Hz]")
plt.title("Spectrogram of the signal")
plt.show()
f0 = 18000
f_idx = np.argmin(np.abs(f - f0))
thresholds_start = calculate_snr(y, first_part_start, first_part_end, low_frequency)
thresholds_end = calculate_snr(y, second_part_start, second_part_end, high_frequency)
t_idx_start = np.argmax(sxx[f_idx] > thresholds_start)
t_start = t[t_idx_start]
t_idx_end = t_idx_start
while t_idx_end < len(t) and np.max(sxx[f_idx, t_idx_end:]) > thresholds_end:
t_idx_end += 1
t_end = t[t_idx_end]
return t_start, t_end
# -----------------Receiver----------------- #
def dominant_frequency(signal_value):
yf = fft(signal_value)
xf = np.linspace(0.0, sample_rate / 2.0, len(signal_value) // 2)
peaks, _ = find_peaks(np.abs(yf[0:len(signal_value) // 2]))
return xf[peaks[np.argmax(np.abs(yf[0:len(signal_value) // 2][peaks]))]]
def binary_to_text(binary):
try:
return ''.join(chr(int(binary[i:i + 8], 2)) for i in range(0, len(binary), 8))
except Exception as e:
return f"Except: {e}"
def decode_rs(binary_string, ecc_bytes):
byte_data = bytearray(int(binary_string[i:i + 8], 2) for i in range(0, len(binary_string), 8))
rs = reedsolo.RSCodec(ecc_bytes)
corrected_data_tuple = rs.decode(byte_data)
corrected_data = corrected_data_tuple[0]
corrected_data = corrected_data.rstrip(b'\x00')
corrected_binary_string = ''.join(format(byte, '08b') for byte in corrected_data)
return corrected_binary_string
def manchester_decoding(binary_string):
decoded_string = ''
for i in tqdm(range(0, len(binary_string), 2), desc="Decoding"):
if i + 1 < len(binary_string):
if binary_string[i] == '0' and binary_string[i + 1] == '1':
decoded_string += '0'
elif binary_string[i] == '1' and binary_string[i + 1] == '0':
decoded_string += '1'
else:
print("Error: Invalid Manchester Encoding")
return None
return decoded_string
def signal_to_binary_between_times(filename):
start_time, end_time = frame_analyse(filename)
sr, data = read(filename)
start_sample = int((start_time - 0.007) * sr)
end_sample = int((end_time - 0.007) * sr)
binary_string = ''
start_analyse_time = time.time()
for i in tqdm(range(start_sample, end_sample, int(sr * bit_duration))):
signal_value = data[i:i + int(sr * bit_duration)]
frequency = dominant_frequency(signal_value)
if np.abs(frequency - low_frequency) < np.abs(frequency - high_frequency):
binary_string += '0'
else:
binary_string += '1'
index_start = binary_string.find("1000001")
substrings = ["0111110", "011110"]
index_end = -1
for substring in substrings:
index = binary_string.find(substring)
if index != -1:
index_end = index
break
print("Binary String:", binary_string)
binary_string_decoded = manchester_decoding(binary_string[index_start + 7:index_end])
decoded_binary_string = decode_rs(binary_string_decoded, 20)
return decoded_binary_string
def receive():
try:
audio_receive = signal_to_binary_between_times('output_filtered_receiver.wav')
return binary_to_text(audio_receive)
except Exception as e:
return f"Error: {e}"
# -----------------Interface----------------- #
with gr.Blocks() as demo:
input_audio = gr.Audio(sources=["upload"])
output_text = gr.Textbox(label="Record Sound")
btn_convert = gr.Button(value="Convert")
btn_convert.click(fn=record, inputs=input_audio, outputs=output_text)
output_convert = gr.Textbox(label="Received Text")
btn_receive = gr.Button(value="Received Text")
btn_receive.click(fn=receive, outputs=output_convert)
demo.launch() |