File size: 8,505 Bytes
a8c8bb7
05d9771
a8c8bb7
 
 
 
 
 
 
 
 
 
 
1c4573f
 
097e8db
2557ecb
097e8db
a8c8bb7
1c4573f
a8c8bb7
 
 
 
1c4573f
ab96498
e9ef9ac
ab96498
 
 
e9ef9ac
ab96498
 
 
e9ef9ac
ab96498
 
 
 
713f3f3
ab96498
 
 
 
 
 
 
 
 
 
 
 
5a74463
d3bc4dd
 
ab96498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a74463
ab96498
5a74463
a8c8bb7
 
ab96498
 
 
 
d3bc4dd
ab96498
 
 
 
ae67ec6
 
 
ab96498
 
1c4573f
ab96498
 
a8c8bb7
ab96498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557ecb
1c4573f
713f3f3
a8c8bb7
713f3f3
a3c18bc
 
 
 
 
a8c8bb7
a3c18bc
 
 
1c4573f
a3c18bc
 
a8c8bb7
 
a3c18bc
 
a8c8bb7
a3c18bc
 
a8c8bb7
a3c18bc
 
a8c8bb7
a3c18bc
 
a8c8bb7
a3c18bc
a8c8bb7
a3c18bc
 
 
 
 
 
a8c8bb7
a3c18bc
a8c8bb7
a3c18bc
a8c8bb7
a3c18bc
 
a8c8bb7
a3c18bc
a8c8bb7
a3c18bc
a8c8bb7
a3c18bc
 
 
a8c8bb7
a3c18bc
a8c8bb7
a3c18bc
1c4573f
2557ecb
a3c18bc
2557ecb
a3c18bc
5a74463
 
 
 
1c4573f
a8c8bb7
 
 
1c4573f
5a74463
a3c18bc
1c4573f
a8c8bb7
 
5a74463
 
 
 
e9ef9ac
5a74463
e9ef9ac
5a74463
e9ef9ac
5a74463
a8c8bb7
1c4573f
a8c8bb7
5a74463
 
 
 
 
 
 
 
 
 
 
a8c8bb7
1c4573f
a8c8bb7
5a74463
 
 
 
 
 
 
 
a3c18bc
 
5a74463
 
 
 
 
 
 
 
 
 
 
a3c18bc
5a74463
 
 
 
 
 
 
 
 
 
 
 
a8c8bb7
 
 
 
60e69dd
a8c8bb7
 
 
 
1c4573f
 
 
a8c8bb7
 
1c4573f
 
 
a8c8bb7
1c4573f
 
 
a8c8bb7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
from scipy.io.wavfile import write
from scipy.signal import find_peaks
from scipy.fft import fft
from tqdm import tqdm
import matplotlib.pyplot as plt
from scipy.io.wavfile import read
from scipy import signal
import gradio as gr
import reedsolo
import wavio
from scipy.signal import butter, lfilter

# ---------------Parameters--------------- #

input_file = 'input_text.wav'
output_file = 'output_filtered_receiver.wav'

low_frequency = 18000
high_frequency = 19000
bit_duration = 0.007
sample_rate = 44100
amplitude_scaling_factor = 10.0


# -----------------Filter----------------- #

def butter_bandpass(sr, order=5):
    """
    This function designs a Butterworth bandpass filter.

    Parameters:
    sr (int): The sample rate of the audio.
    order (int): The order of the filter.

    Returns:
    tuple: The filter coefficients `b` and `a`.
    """
    # Calculate the Nyquist frequency
    nyquist = 0.5 * sr

    # Normalize the cutoff frequencies
    low = low_frequency / nyquist
    high = high_frequency / nyquist

    # Design the Butterworth bandpass filter
    coefficient = butter(order, [low, high], btype='band')

    # Extract the filter coefficients
    b = coefficient[0]
    a = coefficient[1]

    return b, a


def butter_bandpass_filter(data, sr, order=5):
    """
    This function applies the Butterworth bandpass filter to a given data.

    Parameters:
    data (array): The audio data to be filtered.
    sr (int): The sample rate of the audio.
    order (int): The order of the filter.

    Returns:
    array: The filtered audio data.
    """
    # Get the filter coefficients
    b, a = butter_bandpass(sr, order=order)

    # Apply the filter to the data
    y = lfilter(b, a, data)

    return y


def filtered():
    """
    This function reads an audio file, applies the bandpass filter to the audio data,
    and then writes the filtered data to an output file.

    Returns:
    str: A success message if the audio is filtered correctly, otherwise an error message.
    """
    try:
        input_file = 'input_text.wav'
        output_file = 'output_filtered_receiver.wav'

        # Read the audio data from the input file
        sr, data = read(input_file)

        # Apply the bandpass filter to the audio data
        filtered_data = butter_bandpass_filter(data, sr)

        # Write the filtered data to the output file
        write(output_file, sr, np.int16(filtered_data))

        return "Filtered Audio Generated"
    except Exception as e:
        # If an error occurs, return an error message
        return f"Error: {str(e)}"


# -----------------Record----------------- #

def record(audio):
    """
    This function records audio and writes it to a .wav file.

    Parameters:
    audio (tuple): A tuple containing the sample rate and the audio data.

    Returns:
    str: A success message if the audio is recorded correctly, otherwise an error message.
    """
    try:
        # Check if the audio tuple contains exactly two elements
        if len(audio) != 2:
            return f"Error: Expected a tuple with 2 elements, but got {len(audio)}"

        # Unpack the sample rate and data from the audio tuple
        sr, data = audio

        # Write the audio data to a .wav file
        wavio.write("recorded.wav", data, sr)

        # Call the filtered function to apply the bandpass filter to the audio data
        filtered()

        # Return a success message
        return f"Audio receive correctly"
    except Exception as e:
        # If an error occurs, return an error message
        return f"Error: {str(e)}"


# -----------------Frame----------------- #

def calculate_snr(data, start, end, target_frequency):
    segment = data[start:end]
    spectrum = np.fft.fft(segment)
    frequencies = np.fft.fftfreq(len(spectrum), 1 / sample_rate)
    target_index = np.abs(frequencies - target_frequency).argmin()
    amplitude = np.abs(spectrum[target_index])

    noise_segment = data[100:1000 + len(segment)]
    noise_spectrum = np.fft.fft(noise_segment)
    noise_amplitude = np.abs(noise_spectrum[target_index])

    snr = 10 * np.log10(amplitude / noise_amplitude)
    return snr


def frame_analyse(filename):
    sr, y = read(filename)

    first_part_start = 0
    first_part_end = len(y) // 2

    second_part_start = len(y) // 2
    second_part_end = len(y)

    segment_length = 256
    overlap_size = 128

    f, t, sxx = signal.spectrogram(y, sr, nperseg=segment_length, noverlap=overlap_size)

    plt.figure()
    plt.pcolormesh(t, f, sxx, shading="gouraud")
    plt.xlabel("Time [s]")
    plt.ylabel("Frequency [Hz]")
    plt.title("Spectrogram of the signal")
    plt.show()

    f0 = 18000

    f_idx = np.argmin(np.abs(f - f0))

    thresholds_start = calculate_snr(y, first_part_start, first_part_end, low_frequency)
    thresholds_end = calculate_snr(y, second_part_start, second_part_end, high_frequency)

    t_idx_start = np.argmax(sxx[f_idx] > thresholds_start)

    t_start = t[t_idx_start]

    t_idx_end = t_idx_start
    while t_idx_end < len(t) and np.max(sxx[f_idx, t_idx_end:]) > thresholds_end:
        t_idx_end += 1

    t_end = t[t_idx_end]

    return t_start, t_end


# -----------------Receiver----------------- #

def dominant_frequency(signal_value):
    yf = fft(signal_value)
    xf = np.linspace(0.0, sample_rate / 2.0, len(signal_value) // 2)
    peaks, _ = find_peaks(np.abs(yf[0:len(signal_value) // 2]))
    return xf[peaks[np.argmax(np.abs(yf[0:len(signal_value) // 2][peaks]))]]


def binary_to_text(binary):
    try:
        return ''.join(chr(int(binary[i:i + 8], 2)) for i in range(0, len(binary), 8))
    except Exception as e:
        return f"Except: {e}"


def decode_rs(binary_string, ecc_bytes):
    byte_data = bytearray(int(binary_string[i:i + 8], 2) for i in range(0, len(binary_string), 8))
    rs = reedsolo.RSCodec(ecc_bytes)
    corrected_data_tuple = rs.decode(byte_data)
    corrected_data = corrected_data_tuple[0]

    corrected_data = corrected_data.rstrip(b'\x00')

    corrected_binary_string = ''.join(format(byte, '08b') for byte in corrected_data)

    return corrected_binary_string


def manchester_decoding(binary_string):
    decoded_string = ''
    for i in tqdm(range(0, len(binary_string), 2), desc="Decoding"):
        if i + 1 < len(binary_string):
            if binary_string[i] == '0' and binary_string[i + 1] == '1':
                decoded_string += '0'
            elif binary_string[i] == '1' and binary_string[i + 1] == '0':
                decoded_string += '1'
            else:
                print("Error: Invalid Manchester Encoding")
                return None
    return decoded_string


def signal_to_binary_between_times(filename):
    start_time, end_time = frame_analyse(filename)

    sr, data = read(filename)

    start_sample = int((start_time - 0.007) * sr)
    end_sample = int((end_time - 0.007) * sr)
    binary_string = ''

    start_analyse_time = time.time()

    for i in tqdm(range(start_sample, end_sample, int(sr * bit_duration))):
        signal_value = data[i:i + int(sr * bit_duration)]
        frequency = dominant_frequency(signal_value)
        if np.abs(frequency - low_frequency) < np.abs(frequency - high_frequency):
            binary_string += '0'
        else:
            binary_string += '1'

    index_start = binary_string.find("1000001")
    substrings = ["0111110", "011110"]
    index_end = -1

    for substring in substrings:
        index = binary_string.find(substring)
        if index != -1:
            index_end = index
            break

    print("Binary String:", binary_string)
    binary_string_decoded = manchester_decoding(binary_string[index_start + 7:index_end])

    decoded_binary_string = decode_rs(binary_string_decoded, 20)

    return decoded_binary_string


def receive():
    try:
        audio_receive = signal_to_binary_between_times('output_filtered_receiver.wav')
        return binary_to_text(audio_receive)
    except Exception as e:
        return f"Error: {e}"


# -----------------Interface----------------- #

with gr.Blocks() as demo:
    input_audio = gr.Audio(sources=["upload"])
    output_text = gr.Textbox(label="Record Sound")
    btn_convert = gr.Button(value="Convert")
    btn_convert.click(fn=record, inputs=input_audio, outputs=output_text)

    output_convert = gr.Textbox(label="Received Text")
    btn_receive = gr.Button(value="Received Text")
    btn_receive.click(fn=receive, outputs=output_convert)

demo.launch()