Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ from scipy.io.wavfile import write
|
|
3 |
from scipy.signal import find_peaks
|
4 |
from scipy.fft import fft
|
5 |
from tqdm import tqdm
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
from scipy.io.wavfile import read
|
8 |
from scipy import signal
|
@@ -13,9 +14,6 @@ from scipy.signal import butter, lfilter
|
|
13 |
|
14 |
# ---------------Parameters--------------- #
|
15 |
|
16 |
-
input_file = 'input_text.wav'
|
17 |
-
output_file = 'output_filtered_sender.wav'
|
18 |
-
|
19 |
low_frequency = 18000
|
20 |
high_frequency = 19000
|
21 |
bit_duration = 0.007
|
@@ -23,286 +21,137 @@ sample_rate = 44100
|
|
23 |
amplitude_scaling_factor = 10.0
|
24 |
|
25 |
|
26 |
-
# -----------------
|
27 |
-
|
28 |
-
def butter_bandpass(sr, order=5):
|
29 |
-
"""
|
30 |
-
This function designs a Butterworth bandpass filter.
|
31 |
-
|
32 |
-
Parameters:
|
33 |
-
sr (int): The sample rate of the audio.
|
34 |
-
order (int): The order of the filter.
|
35 |
-
|
36 |
-
Returns:
|
37 |
-
tuple: The filter coefficients `b` and `a`.
|
38 |
-
"""
|
39 |
-
# Calculate the Nyquist frequency
|
40 |
-
nyquist = 0.5 * sr
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
# Design the Butterworth bandpass filter
|
47 |
-
coefficient = butter(order, [low, high], btype='band')
|
48 |
|
49 |
-
|
50 |
-
b = coefficient[0]
|
51 |
-
a = coefficient[1]
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
return b, a
|
54 |
|
55 |
|
56 |
-
def butter_bandpass_filter(data, sr, order=5):
|
57 |
-
|
58 |
-
This function applies the Butterworth bandpass filter to a given data.
|
59 |
-
|
60 |
-
Parameters:
|
61 |
-
data (array): The audio data to be filtered.
|
62 |
-
sr (int): The sample rate of the audio.
|
63 |
-
order (int): The order of the filter.
|
64 |
-
|
65 |
-
Returns:
|
66 |
-
array: The filtered audio data.
|
67 |
-
"""
|
68 |
-
# Get the filter coefficients
|
69 |
-
b, a = butter_bandpass(sr, order=order)
|
70 |
-
|
71 |
-
# Apply the filter to the data
|
72 |
y = lfilter(b, a, data)
|
73 |
-
|
74 |
return y
|
75 |
|
76 |
|
77 |
-
def
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
81 |
|
82 |
-
|
83 |
-
str: A success message if the audio is filtered correctly, otherwise an error message.
|
84 |
-
"""
|
85 |
-
try:
|
86 |
-
# Read the audio data from the input file
|
87 |
-
sr, data = read(input_file)
|
88 |
|
89 |
-
|
90 |
-
|
|
|
91 |
|
92 |
-
# Write the filtered data to the output file
|
93 |
-
write(output_file, sr, np.int16(filtered_data))
|
94 |
|
95 |
-
|
96 |
-
except Exception as e:
|
97 |
-
# If an error occurs, return an error message
|
98 |
-
return f"Error: {str(e)}"
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
sr, data = audio
|
106 |
-
wavio.write("recorded.wav", data, sr)
|
107 |
-
filtered()
|
108 |
-
return f"Audio receive correctly"
|
109 |
-
except Exception as e:
|
110 |
-
return f"Error: {e}"
|
111 |
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
def calculate_snr(data, start, end, target_frequency):
|
116 |
-
"""
|
117 |
-
This function calculates the Signal-to-Noise Ratio (SNR) for a given frequency within a segment of data.
|
118 |
-
|
119 |
-
Parameters:
|
120 |
-
data (array): The audio data.
|
121 |
-
start (int): The start index of the segment.
|
122 |
-
end (int): The end index of the segment.
|
123 |
-
target_frequency (float): The frequency for which the SNR is to be calculated.
|
124 |
-
|
125 |
-
Returns:
|
126 |
-
float: The calculated SNR.
|
127 |
-
"""
|
128 |
-
try:
|
129 |
-
# Extract the segment from the data
|
130 |
-
segment = data[start:end]
|
131 |
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
|
138 |
-
|
139 |
-
|
140 |
|
141 |
-
|
142 |
-
amplitude = np.abs(spectrum[target_index])
|
143 |
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
|
148 |
-
noise_spectrum = np.fft.fft(noise_segment)
|
149 |
|
150 |
-
|
151 |
-
noise_amplitude = np.abs(noise_spectrum[target_index])
|
152 |
|
153 |
-
|
154 |
-
|
155 |
|
156 |
-
|
157 |
-
except Exception as e:
|
158 |
-
# If an error occurs, return an error message
|
159 |
-
return f"Error: {e}"
|
160 |
|
|
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
|
166 |
-
|
167 |
-
filename (str): The path to the audio file.
|
168 |
|
169 |
-
|
170 |
-
tuple: The start and end times of the signal of interest.
|
171 |
-
"""
|
172 |
-
try:
|
173 |
-
# Read the audio file
|
174 |
-
sr, y = read(filename)
|
175 |
-
|
176 |
-
# Define the start and end indices of the first and second parts of the audio data
|
177 |
-
first_part_start = 0
|
178 |
-
first_part_end = len(y) // 2
|
179 |
-
second_part_start = len(y) // 2
|
180 |
-
second_part_end = len(y)
|
181 |
-
|
182 |
-
# Define the segment length and overlap size for the spectrogram
|
183 |
-
segment_length = 256
|
184 |
-
overlap_size = 128
|
185 |
-
|
186 |
-
# Calculate the spectrogram of the audio data
|
187 |
-
f, t, sxx = signal.spectrogram(y, sr, nperseg=segment_length, noverlap=overlap_size)
|
188 |
-
|
189 |
-
# Plot the spectrogram
|
190 |
-
plt.figure()
|
191 |
-
plt.pcolormesh(t, f, sxx, shading="gouraud")
|
192 |
-
plt.xlabel("Time [s]")
|
193 |
-
plt.ylabel("Frequency [Hz]")
|
194 |
-
plt.title("Spectrogram of the signal")
|
195 |
-
plt.show()
|
196 |
-
|
197 |
-
# Define the target frequency
|
198 |
-
f0 = 18000
|
199 |
-
|
200 |
-
# Find the index of the target frequency
|
201 |
-
f_idx = np.argmin(np.abs(f - f0))
|
202 |
-
|
203 |
-
# Calculate the SNR thresholds for the start and end of the signal
|
204 |
-
thresholds_start = calculate_snr(y, first_part_start, first_part_end, low_frequency)
|
205 |
-
thresholds_end = calculate_snr(y, second_part_start, second_part_end, high_frequency)
|
206 |
-
|
207 |
-
# Find the start and end indices of the signal of interest
|
208 |
-
t_idx_start = np.argmax(sxx[f_idx] > thresholds_start)
|
209 |
-
t_idx_end = t_idx_start
|
210 |
-
while t_idx_end < len(t) and np.max(sxx[f_idx, t_idx_end:]) > thresholds_end:
|
211 |
-
t_idx_end += 1
|
212 |
-
|
213 |
-
# Convert the start and end indices to times
|
214 |
-
t_start = t[t_idx_start]
|
215 |
-
t_end = t[t_idx_end]
|
216 |
-
|
217 |
-
return t_start, t_end
|
218 |
-
except Exception as e:
|
219 |
-
# If an error occurs, return an error message
|
220 |
-
return f"Error: {e}"
|
221 |
|
222 |
|
223 |
# -----------------Receiver----------------- #
|
224 |
|
225 |
def dominant_frequency(signal_value):
|
226 |
-
"""
|
227 |
-
This function calculates the dominant frequency in a given signal.
|
228 |
-
|
229 |
-
Parameters:
|
230 |
-
signal_value (array): The signal data.
|
231 |
-
|
232 |
-
Returns:
|
233 |
-
float: The dominant frequency.
|
234 |
-
"""
|
235 |
-
# Perform a Fast Fourier Transform on the signal
|
236 |
yf = fft(signal_value)
|
237 |
-
|
238 |
-
# Generate the frequencies corresponding to the FFT coefficients
|
239 |
xf = np.linspace(0.0, sample_rate / 2.0, len(signal_value) // 2)
|
240 |
-
|
241 |
-
# Find the peaks in the absolute values of the FFT coefficients
|
242 |
peaks, _ = find_peaks(np.abs(yf[0:len(signal_value) // 2]))
|
243 |
-
|
244 |
-
# Return the frequency corresponding to the peak with the highest amplitude
|
245 |
return xf[peaks[np.argmax(np.abs(yf[0:len(signal_value) // 2][peaks]))]]
|
246 |
|
247 |
|
248 |
def binary_to_text(binary):
|
249 |
-
"""
|
250 |
-
This function converts a binary string to text.
|
251 |
-
|
252 |
-
Parameters:
|
253 |
-
binary (str): The binary string.
|
254 |
-
|
255 |
-
Returns:
|
256 |
-
str: The converted text.
|
257 |
-
"""
|
258 |
try:
|
259 |
-
# Convert each 8-bit binary number to a character and join them together
|
260 |
return ''.join(chr(int(binary[i:i + 8], 2)) for i in range(0, len(binary), 8))
|
261 |
except Exception as e:
|
262 |
-
|
263 |
-
return f"Error: {e}"
|
264 |
|
265 |
|
266 |
def decode_rs(binary_string, ecc_bytes):
|
267 |
-
"""
|
268 |
-
This function decodes a Reed-Solomon encoded binary string.
|
269 |
-
|
270 |
-
Parameters:
|
271 |
-
binary_string (str): The binary string.
|
272 |
-
ecc_bytes (int): The number of error correction bytes used in the encoding.
|
273 |
-
|
274 |
-
Returns:
|
275 |
-
str: The decoded binary string.
|
276 |
-
"""
|
277 |
-
# Convert the binary string to a bytearray
|
278 |
byte_data = bytearray(int(binary_string[i:i + 8], 2) for i in range(0, len(binary_string), 8))
|
279 |
-
|
280 |
-
# Initialize a Reed-Solomon codec
|
281 |
rs = reedsolo.RSCodec(ecc_bytes)
|
282 |
-
|
283 |
-
# Decode the bytearray
|
284 |
corrected_data_tuple = rs.decode(byte_data)
|
285 |
corrected_data = corrected_data_tuple[0]
|
286 |
|
287 |
-
# Remove trailing null bytes
|
288 |
corrected_data = corrected_data.rstrip(b'\x00')
|
289 |
|
290 |
-
# Convert the bytearray back to a binary string
|
291 |
corrected_binary_string = ''.join(format(byte, '08b') for byte in corrected_data)
|
292 |
|
293 |
return corrected_binary_string
|
294 |
|
295 |
|
296 |
def manchester_decoding(binary_string):
|
297 |
-
"""
|
298 |
-
This function decodes a Manchester encoded binary string.
|
299 |
-
|
300 |
-
Parameters:
|
301 |
-
binary_string (str): The binary string.
|
302 |
-
|
303 |
-
Returns:
|
304 |
-
str: The decoded binary string.
|
305 |
-
"""
|
306 |
decoded_string = ''
|
307 |
for i in tqdm(range(0, len(binary_string), 2), desc="Decoding"):
|
308 |
if i + 1 < len(binary_string):
|
@@ -317,27 +166,16 @@ def manchester_decoding(binary_string):
|
|
317 |
|
318 |
|
319 |
def signal_to_binary_between_times(filename):
|
320 |
-
"""
|
321 |
-
This function converts a signal to a binary string between specified times.
|
322 |
-
|
323 |
-
Parameters:
|
324 |
-
filename (str): The path to the audio file.
|
325 |
-
|
326 |
-
Returns:
|
327 |
-
str: The binary string.
|
328 |
-
"""
|
329 |
-
# Get the start and end times of the signal of interest
|
330 |
start_time, end_time = frame_analyse(filename)
|
331 |
|
332 |
-
# Read the audio file
|
333 |
sr, data = read(filename)
|
334 |
|
335 |
-
# Calculate the start and end samples of the signal of interest
|
336 |
start_sample = int((start_time - 0.007) * sr)
|
337 |
end_sample = int((end_time - 0.007) * sr)
|
338 |
binary_string = ''
|
339 |
|
340 |
-
|
|
|
341 |
for i in tqdm(range(start_sample, end_sample, int(sr * bit_duration))):
|
342 |
signal_value = data[i:i + int(sr * bit_duration)]
|
343 |
frequency = dominant_frequency(signal_value)
|
@@ -346,10 +184,10 @@ def signal_to_binary_between_times(filename):
|
|
346 |
else:
|
347 |
binary_string += '1'
|
348 |
|
349 |
-
# Find the start and end indices of the binary string
|
350 |
index_start = binary_string.find("1000001")
|
351 |
substrings = ["0111110", "011110"]
|
352 |
index_end = -1
|
|
|
353 |
for substring in substrings:
|
354 |
index = binary_string.find(substring)
|
355 |
if index != -1:
|
@@ -359,33 +197,21 @@ def signal_to_binary_between_times(filename):
|
|
359 |
print("Binary String:", binary_string)
|
360 |
binary_string_decoded = manchester_decoding(binary_string[index_start + 7:index_end])
|
361 |
|
362 |
-
# Decode the binary string
|
363 |
decoded_binary_string = decode_rs(binary_string_decoded, 20)
|
364 |
|
365 |
return decoded_binary_string
|
366 |
|
367 |
|
368 |
def receive():
|
369 |
-
"""
|
370 |
-
This function receives an audio signal, converts it to a binary string, and then converts the binary string to text.
|
371 |
-
|
372 |
-
Returns:
|
373 |
-
str: The received text.
|
374 |
-
"""
|
375 |
try:
|
376 |
-
# Convert the audio signal to a binary string
|
377 |
audio_receive = signal_to_binary_between_times('output_filtered_receiver.wav')
|
378 |
-
|
379 |
-
# Convert the binary string to text
|
380 |
return binary_to_text(audio_receive)
|
381 |
except Exception as e:
|
382 |
-
# If an error occurs, return an error message
|
383 |
return f"Error: {e}"
|
384 |
|
385 |
|
386 |
# -----------------Interface----------------- #
|
387 |
|
388 |
-
# Start a Gradio Blocks interface
|
389 |
with gr.Blocks() as demo:
|
390 |
input_audio = gr.Audio(sources=["upload"])
|
391 |
output_text = gr.Textbox(label="Record Sound")
|
|
|
3 |
from scipy.signal import find_peaks
|
4 |
from scipy.fft import fft
|
5 |
from tqdm import tqdm
|
6 |
+
import time
|
7 |
import matplotlib.pyplot as plt
|
8 |
from scipy.io.wavfile import read
|
9 |
from scipy import signal
|
|
|
14 |
|
15 |
# ---------------Parameters--------------- #
|
16 |
|
|
|
|
|
|
|
17 |
low_frequency = 18000
|
18 |
high_frequency = 19000
|
19 |
bit_duration = 0.007
|
|
|
21 |
amplitude_scaling_factor = 10.0
|
22 |
|
23 |
|
24 |
+
# -----------------Record----------------- #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
def record(audio):
|
27 |
+
try:
|
28 |
+
sr, data = audio
|
29 |
+
wavio.write("recorded.wav", data, sr)
|
30 |
+
main()
|
31 |
+
return f"Audio receive correctly"
|
32 |
+
except Exception as e:
|
33 |
+
return f"Error: {e}"
|
34 |
|
|
|
|
|
35 |
|
36 |
+
# -----------------Filter----------------- #
|
|
|
|
|
37 |
|
38 |
+
def butter_bandpass(lowcut, highcut, sr, order=5):
|
39 |
+
nyquist = 0.5 * sr
|
40 |
+
low = lowcut / nyquist
|
41 |
+
high = highcut / nyquist
|
42 |
+
coef = butter(order, [low, high], btype='band')
|
43 |
+
b = coef[0]
|
44 |
+
a = coef[1]
|
45 |
return b, a
|
46 |
|
47 |
|
48 |
+
def butter_bandpass_filter(data, lowcut, highcut, sr, order=5):
|
49 |
+
b, a = butter_bandpass(lowcut, highcut, sr, order=order)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
y = lfilter(b, a, data)
|
|
|
51 |
return y
|
52 |
|
53 |
|
54 |
+
def main():
|
55 |
+
input_file = 'recorded.wav'
|
56 |
+
output_file = 'output_filtered_receiver.wav'
|
57 |
+
lowcut = 17500
|
58 |
+
highcut = 19500
|
59 |
|
60 |
+
sr, data = read(input_file)
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
filtered_data = butter_bandpass_filter(data, lowcut, highcut, sr)
|
63 |
+
write(output_file, sr, np.int16(filtered_data))
|
64 |
+
return "Filtered Audio Generated"
|
65 |
|
|
|
|
|
66 |
|
67 |
+
# -----------------Frame----------------- #
|
|
|
|
|
|
|
68 |
|
69 |
+
def calculate_snr(data, start, end, target_frequency):
|
70 |
+
segment = data[start:end]
|
71 |
+
spectrum = np.fft.fft(segment)
|
72 |
+
frequencies = np.fft.fftfreq(len(spectrum), 1 / sample_rate)
|
73 |
+
target_index = np.abs(frequencies - target_frequency).argmin()
|
74 |
+
amplitude = np.abs(spectrum[target_index])
|
75 |
|
76 |
+
noise_segment = data[100:1000 + len(segment)]
|
77 |
+
noise_spectrum = np.fft.fft(noise_segment)
|
78 |
+
noise_amplitude = np.abs(noise_spectrum[target_index])
|
79 |
|
80 |
+
snr = 10 * np.log10(amplitude / noise_amplitude)
|
81 |
+
return snr
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
+
def frame_analyse(filename):
|
85 |
+
sr, y = read(filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
first_part_start = 0
|
88 |
+
first_part_end = len(y) // 2
|
89 |
|
90 |
+
second_part_start = len(y) // 2
|
91 |
+
second_part_end = len(y)
|
92 |
|
93 |
+
segment_length = 256
|
94 |
+
overlap_size = 128
|
95 |
|
96 |
+
f, t, sxx = signal.spectrogram(y, sr, nperseg=segment_length, noverlap=overlap_size)
|
|
|
97 |
|
98 |
+
plt.figure()
|
99 |
+
plt.pcolormesh(t, f, sxx, shading="gouraud")
|
100 |
+
plt.xlabel("Time [s]")
|
101 |
+
plt.ylabel("Frequency [Hz]")
|
102 |
+
plt.title("Spectrogram of the signal")
|
103 |
+
plt.show()
|
104 |
|
105 |
+
f0 = 18000
|
|
|
106 |
|
107 |
+
f_idx = np.argmin(np.abs(f - f0))
|
|
|
108 |
|
109 |
+
thresholds_start = calculate_snr(y, first_part_start, first_part_end, low_frequency)
|
110 |
+
thresholds_end = calculate_snr(y, second_part_start, second_part_end, high_frequency)
|
111 |
|
112 |
+
t_idx_start = np.argmax(sxx[f_idx] > thresholds_start)
|
|
|
|
|
|
|
113 |
|
114 |
+
t_start = t[t_idx_start]
|
115 |
|
116 |
+
t_idx_end = t_idx_start
|
117 |
+
while t_idx_end < len(t) and np.max(sxx[f_idx, t_idx_end:]) > thresholds_end:
|
118 |
+
t_idx_end += 1
|
119 |
|
120 |
+
t_end = t[t_idx_end]
|
|
|
121 |
|
122 |
+
return t_start, t_end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
|
125 |
# -----------------Receiver----------------- #
|
126 |
|
127 |
def dominant_frequency(signal_value):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
yf = fft(signal_value)
|
|
|
|
|
129 |
xf = np.linspace(0.0, sample_rate / 2.0, len(signal_value) // 2)
|
|
|
|
|
130 |
peaks, _ = find_peaks(np.abs(yf[0:len(signal_value) // 2]))
|
|
|
|
|
131 |
return xf[peaks[np.argmax(np.abs(yf[0:len(signal_value) // 2][peaks]))]]
|
132 |
|
133 |
|
134 |
def binary_to_text(binary):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
try:
|
|
|
136 |
return ''.join(chr(int(binary[i:i + 8], 2)) for i in range(0, len(binary), 8))
|
137 |
except Exception as e:
|
138 |
+
return f"Except: {e}"
|
|
|
139 |
|
140 |
|
141 |
def decode_rs(binary_string, ecc_bytes):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
byte_data = bytearray(int(binary_string[i:i + 8], 2) for i in range(0, len(binary_string), 8))
|
|
|
|
|
143 |
rs = reedsolo.RSCodec(ecc_bytes)
|
|
|
|
|
144 |
corrected_data_tuple = rs.decode(byte_data)
|
145 |
corrected_data = corrected_data_tuple[0]
|
146 |
|
|
|
147 |
corrected_data = corrected_data.rstrip(b'\x00')
|
148 |
|
|
|
149 |
corrected_binary_string = ''.join(format(byte, '08b') for byte in corrected_data)
|
150 |
|
151 |
return corrected_binary_string
|
152 |
|
153 |
|
154 |
def manchester_decoding(binary_string):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
decoded_string = ''
|
156 |
for i in tqdm(range(0, len(binary_string), 2), desc="Decoding"):
|
157 |
if i + 1 < len(binary_string):
|
|
|
166 |
|
167 |
|
168 |
def signal_to_binary_between_times(filename):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
start_time, end_time = frame_analyse(filename)
|
170 |
|
|
|
171 |
sr, data = read(filename)
|
172 |
|
|
|
173 |
start_sample = int((start_time - 0.007) * sr)
|
174 |
end_sample = int((end_time - 0.007) * sr)
|
175 |
binary_string = ''
|
176 |
|
177 |
+
start_analyse_time = time.time()
|
178 |
+
|
179 |
for i in tqdm(range(start_sample, end_sample, int(sr * bit_duration))):
|
180 |
signal_value = data[i:i + int(sr * bit_duration)]
|
181 |
frequency = dominant_frequency(signal_value)
|
|
|
184 |
else:
|
185 |
binary_string += '1'
|
186 |
|
|
|
187 |
index_start = binary_string.find("1000001")
|
188 |
substrings = ["0111110", "011110"]
|
189 |
index_end = -1
|
190 |
+
|
191 |
for substring in substrings:
|
192 |
index = binary_string.find(substring)
|
193 |
if index != -1:
|
|
|
197 |
print("Binary String:", binary_string)
|
198 |
binary_string_decoded = manchester_decoding(binary_string[index_start + 7:index_end])
|
199 |
|
|
|
200 |
decoded_binary_string = decode_rs(binary_string_decoded, 20)
|
201 |
|
202 |
return decoded_binary_string
|
203 |
|
204 |
|
205 |
def receive():
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
try:
|
|
|
207 |
audio_receive = signal_to_binary_between_times('output_filtered_receiver.wav')
|
|
|
|
|
208 |
return binary_to_text(audio_receive)
|
209 |
except Exception as e:
|
|
|
210 |
return f"Error: {e}"
|
211 |
|
212 |
|
213 |
# -----------------Interface----------------- #
|
214 |
|
|
|
215 |
with gr.Blocks() as demo:
|
216 |
input_audio = gr.Audio(sources=["upload"])
|
217 |
output_text = gr.Textbox(label="Record Sound")
|