BN / app.py
Avinash109's picture
Update app.py
ad04e27 verified
raw
history blame
6.8 kB
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import gradio as gr
import os
import time
from fastapi import FastAPI, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
import asyncio
# FastAPI app
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global variables
model = None
scaler = None
latest_report = "Initializing..."
# Define the Dataset class
class BankNiftyDataset(Dataset):
def __init__(self, data, seq_len, target_cols=['close']):
self.data = data
self.seq_len = seq_len
self.target_cols = target_cols
def __len__(self):
return max(0, len(self.data) - self.seq_len + 1)
def __getitem__(self, idx):
seq_data = self.data.iloc[idx:idx+self.seq_len]
features = torch.tensor(seq_data[['open', 'high', 'low', 'close', 'volume', 'oi']].values, dtype=torch.float32)
label = torch.tensor(seq_data[self.target_cols].iloc[-1].values, dtype=torch.float32)
return features, label
# Define the LSTM model
class LSTMModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, dropout=0.1):
super(LSTMModel, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
self.fc = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim // 2, output_dim)
)
def forward(self, x):
lstm_out, _ = self.lstm(x)
out = self.fc(lstm_out[:, -1, :])
return out
# Function to train the model
def train_model(train_loader, val_loader, num_epochs=10):
global model
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
model.train()
for features, labels in train_loader:
optimizer.zero_grad()
outputs = model(features)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
model.eval()
val_loss = 0
with torch.no_grad():
for features, labels in val_loader:
outputs = model(features)
val_loss += criterion(outputs, labels).item()
val_loss /= len(val_loader)
print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")
# Function to generate trading signals
def generate_signals(predictions, actual_values, stop_loss_threshold=0.05):
signals = []
for pred, actual in zip(predictions, actual_values):
if pred > actual * (1 + stop_loss_threshold):
signals.append("Buy CE")
elif pred < actual * (1 - stop_loss_threshold):
signals.append("Buy PE")
else:
signals.append("Hold")
return signals
# Function to generate a report
def generate_report(predictions, actual_values, signals):
report = []
cumulative_profit = 0
for i in range(len(signals)):
signal = signals[i]
profit = actual_values[i] - predictions[i]
if signal == "Buy CE":
cumulative_profit += profit
elif signal == "Buy PE":
cumulative_profit -= profit
report.append(f"Signal: {signal}, Actual: {actual_values[i]:.2f}, Predicted: {predictions[i]:.2f}, Profit: {profit:.2f}")
total_profit = cumulative_profit
report.append(f"Total Profit: {total_profit:.2f}")
return "\n".join(report)
# Function to process data and make predictions
def predict():
global model, scaler, latest_report
# Load the pre-existing CSV file
csv_path = 'BANKNIFTY_OPTION_CHAIN_data.csv'
if not os.path.exists(csv_path):
return "Error: CSV file not found in the expected location."
# Load and preprocess data
data = pd.read_csv(csv_path)
if scaler is None:
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
else:
scaled_data = scaler.transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
# Split data
train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)
# Create datasets and dataloaders
seq_len = 20
target_cols = ['close']
train_dataset = BankNiftyDataset(train_data, seq_len, target_cols)
val_dataset = BankNiftyDataset(val_data, seq_len, target_cols)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
# Initialize and train the model
if model is None:
input_dim = 6
hidden_dim = 64
output_dim = len(target_cols)
model = LSTMModel(input_dim, hidden_dim, output_dim)
train_model(train_loader, val_loader)
# Make predictions
model.eval()
predictions = []
actual_values = val_data['close'].values[seq_len-1:]
with torch.no_grad():
for i in range(len(val_dataset)):
features, _ = val_dataset[i]
pred = model(features.unsqueeze(0)).item()
predictions.append(pred)
# Generate signals and report
signals = generate_signals(predictions, actual_values)
latest_report = generate_report(predictions, actual_values, signals)
return latest_report
# Background task to update the model and report
async def update_model_and_report():
global latest_report
while True:
latest_report = predict()
await asyncio.sleep(3600) # Update every hour
# Startup event to begin the background task
@app.on_event("startup")
async def startup_event():
background_tasks = BackgroundTasks()
background_tasks.add_task(update_model_and_report)
await background_tasks()
# Gradio interface
def gradio_interface():
return latest_report
iface = gr.Interface(
fn=gradio_interface,
inputs=None,
outputs=gr.Textbox(label="Latest Prediction Report"),
title="BankNifty Option Chain Predictor",
description="This app automatically generates and updates predictions and trading signals based on the latest BankNifty option chain data."
)
# Combine FastAPI and Gradio
app = gr.mount_gradio_app(app, iface, path="/")
# Run the FastAPI app
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)