Spaces:
Sleeping
Sleeping
File size: 6,798 Bytes
182c4ed 441f684 3776d99 8448555 73670cb 8448555 ad04e27 73670cb 8448555 3776d99 8448555 3776d99 441f684 3776d99 8448555 7e2ed99 3776d99 8448555 73670cb 441f684 73670cb 8448555 441f684 8448555 441f684 8448555 441f684 7e2ed99 3776d99 441f684 8448555 3776d99 8448555 ad04e27 8448555 ad04e27 8448555 ad04e27 8448555 73670cb 8448555 ad04e27 8448555 73670cb 8448555 73670cb 8448555 ad04e27 8448555 ad04e27 8448555 ad04e27 8448555 ad04e27 8448555 ad04e27 8448555 ad04e27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import gradio as gr
import os
import time
from fastapi import FastAPI, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
import asyncio
# FastAPI app
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global variables
model = None
scaler = None
latest_report = "Initializing..."
# Define the Dataset class
class BankNiftyDataset(Dataset):
def __init__(self, data, seq_len, target_cols=['close']):
self.data = data
self.seq_len = seq_len
self.target_cols = target_cols
def __len__(self):
return max(0, len(self.data) - self.seq_len + 1)
def __getitem__(self, idx):
seq_data = self.data.iloc[idx:idx+self.seq_len]
features = torch.tensor(seq_data[['open', 'high', 'low', 'close', 'volume', 'oi']].values, dtype=torch.float32)
label = torch.tensor(seq_data[self.target_cols].iloc[-1].values, dtype=torch.float32)
return features, label
# Define the LSTM model
class LSTMModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, dropout=0.1):
super(LSTMModel, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
self.fc = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim // 2, output_dim)
)
def forward(self, x):
lstm_out, _ = self.lstm(x)
out = self.fc(lstm_out[:, -1, :])
return out
# Function to train the model
def train_model(train_loader, val_loader, num_epochs=10):
global model
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
model.train()
for features, labels in train_loader:
optimizer.zero_grad()
outputs = model(features)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
model.eval()
val_loss = 0
with torch.no_grad():
for features, labels in val_loader:
outputs = model(features)
val_loss += criterion(outputs, labels).item()
val_loss /= len(val_loader)
print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")
# Function to generate trading signals
def generate_signals(predictions, actual_values, stop_loss_threshold=0.05):
signals = []
for pred, actual in zip(predictions, actual_values):
if pred > actual * (1 + stop_loss_threshold):
signals.append("Buy CE")
elif pred < actual * (1 - stop_loss_threshold):
signals.append("Buy PE")
else:
signals.append("Hold")
return signals
# Function to generate a report
def generate_report(predictions, actual_values, signals):
report = []
cumulative_profit = 0
for i in range(len(signals)):
signal = signals[i]
profit = actual_values[i] - predictions[i]
if signal == "Buy CE":
cumulative_profit += profit
elif signal == "Buy PE":
cumulative_profit -= profit
report.append(f"Signal: {signal}, Actual: {actual_values[i]:.2f}, Predicted: {predictions[i]:.2f}, Profit: {profit:.2f}")
total_profit = cumulative_profit
report.append(f"Total Profit: {total_profit:.2f}")
return "\n".join(report)
# Function to process data and make predictions
def predict():
global model, scaler, latest_report
# Load the pre-existing CSV file
csv_path = 'BANKNIFTY_OPTION_CHAIN_data.csv'
if not os.path.exists(csv_path):
return "Error: CSV file not found in the expected location."
# Load and preprocess data
data = pd.read_csv(csv_path)
if scaler is None:
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
else:
scaled_data = scaler.transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
# Split data
train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)
# Create datasets and dataloaders
seq_len = 20
target_cols = ['close']
train_dataset = BankNiftyDataset(train_data, seq_len, target_cols)
val_dataset = BankNiftyDataset(val_data, seq_len, target_cols)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
# Initialize and train the model
if model is None:
input_dim = 6
hidden_dim = 64
output_dim = len(target_cols)
model = LSTMModel(input_dim, hidden_dim, output_dim)
train_model(train_loader, val_loader)
# Make predictions
model.eval()
predictions = []
actual_values = val_data['close'].values[seq_len-1:]
with torch.no_grad():
for i in range(len(val_dataset)):
features, _ = val_dataset[i]
pred = model(features.unsqueeze(0)).item()
predictions.append(pred)
# Generate signals and report
signals = generate_signals(predictions, actual_values)
latest_report = generate_report(predictions, actual_values, signals)
return latest_report
# Background task to update the model and report
async def update_model_and_report():
global latest_report
while True:
latest_report = predict()
await asyncio.sleep(3600) # Update every hour
# Startup event to begin the background task
@app.on_event("startup")
async def startup_event():
background_tasks = BackgroundTasks()
background_tasks.add_task(update_model_and_report)
await background_tasks()
# Gradio interface
def gradio_interface():
return latest_report
iface = gr.Interface(
fn=gradio_interface,
inputs=None,
outputs=gr.Textbox(label="Latest Prediction Report"),
title="BankNifty Option Chain Predictor",
description="This app automatically generates and updates predictions and trading signals based on the latest BankNifty option chain data."
)
# Combine FastAPI and Gradio
app = gr.mount_gradio_app(app, iface, path="/")
# Run the FastAPI app
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |