File size: 6,798 Bytes
182c4ed
441f684
3776d99
 
 
 
 
8448555
73670cb
8448555
ad04e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73670cb
8448555
3776d99
8448555
3776d99
 
441f684
 
3776d99
8448555
7e2ed99
3776d99
8448555
73670cb
441f684
73670cb
 
8448555
 
 
 
441f684
 
8448555
441f684
 
8448555
441f684
7e2ed99
3776d99
441f684
8448555
3776d99
 
8448555
ad04e27
 
8448555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad04e27
 
8448555
 
 
 
 
 
 
ad04e27
 
 
 
 
8448555
73670cb
8448555
 
 
 
 
 
 
 
 
 
 
 
ad04e27
 
 
 
 
 
 
8448555
 
73670cb
8448555
 
73670cb
8448555
 
 
 
 
 
 
ad04e27
8448555
ad04e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8448555
 
ad04e27
8448555
ad04e27
8448555
ad04e27
8448555
 
ad04e27
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import gradio as gr
import os
import time
from fastapi import FastAPI, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
import asyncio

# FastAPI app
app = FastAPI()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Global variables
model = None
scaler = None
latest_report = "Initializing..."

# Define the Dataset class
class BankNiftyDataset(Dataset):
    def __init__(self, data, seq_len, target_cols=['close']):
        self.data = data
        self.seq_len = seq_len
        self.target_cols = target_cols

    def __len__(self):
        return max(0, len(self.data) - self.seq_len + 1)

    def __getitem__(self, idx):
        seq_data = self.data.iloc[idx:idx+self.seq_len]
        features = torch.tensor(seq_data[['open', 'high', 'low', 'close', 'volume', 'oi']].values, dtype=torch.float32)
        label = torch.tensor(seq_data[self.target_cols].iloc[-1].values, dtype=torch.float32)
        return features, label

# Define the LSTM model
class LSTMModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, dropout=0.1):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
        self.fc = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim // 2),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim // 2, output_dim)
        )

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        out = self.fc(lstm_out[:, -1, :])
        return out

# Function to train the model
def train_model(train_loader, val_loader, num_epochs=10):
    global model
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    
    for epoch in range(num_epochs):
        model.train()
        for features, labels in train_loader:
            optimizer.zero_grad()
            outputs = model(features)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
        
        model.eval()
        val_loss = 0
        with torch.no_grad():
            for features, labels in val_loader:
                outputs = model(features)
                val_loss += criterion(outputs, labels).item()
        val_loss /= len(val_loader)
        
        print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")

# Function to generate trading signals
def generate_signals(predictions, actual_values, stop_loss_threshold=0.05):
    signals = []
    for pred, actual in zip(predictions, actual_values):
        if pred > actual * (1 + stop_loss_threshold):
            signals.append("Buy CE")
        elif pred < actual * (1 - stop_loss_threshold):
            signals.append("Buy PE")
        else:
            signals.append("Hold")
    return signals

# Function to generate a report
def generate_report(predictions, actual_values, signals):
    report = []
    cumulative_profit = 0
    for i in range(len(signals)):
        signal = signals[i]
        profit = actual_values[i] - predictions[i]
        if signal == "Buy CE":
            cumulative_profit += profit
        elif signal == "Buy PE":
            cumulative_profit -= profit
        report.append(f"Signal: {signal}, Actual: {actual_values[i]:.2f}, Predicted: {predictions[i]:.2f}, Profit: {profit:.2f}")
    
    total_profit = cumulative_profit
    report.append(f"Total Profit: {total_profit:.2f}")
    return "\n".join(report)

# Function to process data and make predictions
def predict():
    global model, scaler, latest_report

    # Load the pre-existing CSV file
    csv_path = 'BANKNIFTY_OPTION_CHAIN_data.csv'
    if not os.path.exists(csv_path):
        return "Error: CSV file not found in the expected location."

    # Load and preprocess data
    data = pd.read_csv(csv_path)
    if scaler is None:
        scaler = StandardScaler()
        scaled_data = scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
    else:
        scaled_data = scaler.transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
    data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data

    # Split data
    train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)

    # Create datasets and dataloaders
    seq_len = 20
    target_cols = ['close']
    train_dataset = BankNiftyDataset(train_data, seq_len, target_cols)
    val_dataset = BankNiftyDataset(val_data, seq_len, target_cols)
    train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)

    # Initialize and train the model
    if model is None:
        input_dim = 6
        hidden_dim = 64
        output_dim = len(target_cols)
        model = LSTMModel(input_dim, hidden_dim, output_dim)

    train_model(train_loader, val_loader)

    # Make predictions
    model.eval()
    predictions = []
    actual_values = val_data['close'].values[seq_len-1:]
    with torch.no_grad():
        for i in range(len(val_dataset)):
            features, _ = val_dataset[i]
            pred = model(features.unsqueeze(0)).item()
            predictions.append(pred)

    # Generate signals and report
    signals = generate_signals(predictions, actual_values)
    latest_report = generate_report(predictions, actual_values, signals)

    return latest_report

# Background task to update the model and report
async def update_model_and_report():
    global latest_report
    while True:
        latest_report = predict()
        await asyncio.sleep(3600)  # Update every hour

# Startup event to begin the background task
@app.on_event("startup")
async def startup_event():
    background_tasks = BackgroundTasks()
    background_tasks.add_task(update_model_and_report)
    await background_tasks()

# Gradio interface
def gradio_interface():
    return latest_report

iface = gr.Interface(
    fn=gradio_interface,
    inputs=None,
    outputs=gr.Textbox(label="Latest Prediction Report"),
    title="BankNifty Option Chain Predictor",
    description="This app automatically generates and updates predictions and trading signals based on the latest BankNifty option chain data."
)

# Combine FastAPI and Gradio
app = gr.mount_gradio_app(app, iface, path="/")

# Run the FastAPI app
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)