CostalSegment / app.py
AveMujica's picture
Update app.py (#1)
b2048d6 verified
raw
history blame contribute delete
15.3 kB
import cv2
import numpy as np
import torch
import gradio as gr
import segmentation_models_pytorch as smp
from PIL import Image
import boto3
import uuid
import io
from glob import glob
import os
from pipeline.ImgOutlier import detect_outliers
from pipeline.normalization import align_images
# Detect if running inside Hugging Face Spaces
HF_SPACE = os.environ.get('SPACE_ID') is not None
# DigitalOcean Spaces upload function
def upload_mask(image, prefix="mask"):
"""
Upload segmentation mask image to DigitalOcean Spaces
Args:
image: PIL Image object
prefix: filename prefix
Returns:
Public URL of the uploaded file
"""
try:
# Get credentials from environment variables
do_key = os.environ.get('DO_SPACES_KEY')
do_secret = os.environ.get('DO_SPACES_SECRET')
do_region = os.environ.get('DO_SPACES_REGION')
do_bucket = os.environ.get('DO_SPACES_BUCKET')
# Check if credentials exist
if not all([do_key, do_secret, do_region, do_bucket]):
return "DigitalOcean credentials not set"
# Create S3 client
session = boto3.session.Session()
client = session.client('s3',
region_name=do_region,
endpoint_url=f'https://{do_region}.digitaloceanspaces.com',
aws_access_key_id=do_key,
aws_secret_access_key=do_secret)
# Generate unique filename
filename = f"{prefix}_{uuid.uuid4().hex}.png"
# Convert image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
# Upload to Spaces
client.upload_fileobj(
img_byte_arr,
do_bucket,
filename,
ExtraArgs={'ACL': 'public-read', 'ContentType': 'image/png'}
)
# Return public URL
url = f'https://{do_bucket}.{do_region}.digitaloceanspaces.com/{filename}'
return url
except Exception as e:
print(f"Upload failed: {str(e)}")
return f"Upload error: {str(e)}"
# Global Configuration
MODEL_PATHS = {
"Metal Marcy": "models/MM_best_model.pth",
"Silhouette Jaenette": "models/SJ_best_model.pth"
}
REFERENCE_VECTOR_PATHS = {
"Metal Marcy": "models/MM_mean.npy",
"Silhouette Jaenette": "models/SJ_mean.npy"
}
REFERENCE_IMAGE_DIRS = {
"Metal Marcy": "reference_images/MM",
"Silhouette Jaenette": "reference_images/SJ"
}
# Category names and color mapping
CLASSES = ['background', 'cobbles', 'drysand', 'plant', 'sky', 'water', 'wetsand']
COLORS = [
[0, 0, 0], # background - black
[139, 137, 137], # cobbles - dark gray
[255, 228, 181], # drysand - light yellow
[0, 128, 0], # plant - green
[135, 206, 235], # sky - sky blue
[0, 0, 255], # water - blue
[194, 178, 128] # wetsand - sand brown
]
# Load model function
def load_model(model_path, device="cuda"):
try:
# If running inside HF Spaces, default to CPU
if HF_SPACE:
device = "cpu"
elif not torch.cuda.is_available():
device = "cpu"
model = smp.create_model(
"DeepLabV3Plus",
encoder_name="efficientnet-b6",
in_channels=3,
classes=len(CLASSES),
encoder_weights=None
)
state_dict = torch.load(model_path, map_location=device)
if all(k.startswith('model.') for k in state_dict.keys()):
state_dict = {k[6:]: v for k, v in state_dict.items()}
model.load_state_dict(state_dict)
model.to(device)
model.eval()
print(f"Model loaded successfully: {model_path}")
return model
except Exception as e:
print(f"Model loading failed: {e}")
return None
# Load reference vector
def load_reference_vector(vector_path):
try:
if not os.path.exists(vector_path):
print(f"Reference vector file not found: {vector_path}")
return []
ref_vector = np.load(vector_path)
print(f"Reference vector loaded successfully: {vector_path}")
return ref_vector
except Exception as e:
print(f"Reference vector loading failed {vector_path}: {e}")
return []
# Load reference images
def load_reference_images(ref_dir):
try:
if not os.path.exists(ref_dir):
print(f"Reference image directory not found: {ref_dir}")
os.makedirs(ref_dir, exist_ok=True)
return []
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.bmp']
image_files = []
for ext in image_extensions:
image_files.extend(glob(os.path.join(ref_dir, ext)))
image_files.sort()
reference_images = []
for file in image_files[:4]:
img = cv2.imread(file)
if img is not None:
reference_images.append(img)
print(f"Loaded {len(reference_images)} images from {ref_dir}")
return reference_images
except Exception as e:
print(f"Image loading failed {ref_dir}: {e}")
return []
# Preprocess the image
def preprocess_image(image):
if image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
orig_h, orig_w = image.shape[:2]
image_resized = cv2.resize(image, (1024, 1024))
image_norm = image_resized.astype(np.float32) / 255.0
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image_norm = (image_norm - mean) / std
image_tensor = torch.from_numpy(image_norm.transpose(2, 0, 1)).float().unsqueeze(0)
return image_tensor, orig_h, orig_w
# Generate segmentation map and visualization
def generate_segmentation_map(prediction, orig_h, orig_w):
mask = prediction.argmax(1).squeeze().cpu().numpy().astype(np.uint8)
mask_resized = cv2.resize(mask, (orig_w, orig_h), interpolation=cv2.INTER_NEAREST)
kernel = np.ones((5, 5), np.uint8)
processed_mask = mask_resized.copy()
for idx in range(1, len(CLASSES)):
class_mask = (mask_resized == idx).astype(np.uint8)
dilated_mask = cv2.dilate(class_mask, kernel, iterations=2)
dilated_effect = dilated_mask & (mask_resized == 0)
processed_mask[dilated_effect > 0] = idx
segmentation_map = np.zeros((orig_h, orig_w, 3), dtype=np.uint8)
for idx, color in enumerate(COLORS):
segmentation_map[processed_mask == idx] = color
return segmentation_map
# Analysis result HTML
def create_analysis_result(mask):
total_pixels = mask.size
percentages = {cls: round((np.sum(mask == i) / total_pixels) * 100, 1)
for i, cls in enumerate(CLASSES)}
ordered = ['sky', 'cobbles', 'plant', 'drysand', 'wetsand', 'water']
result = "<div style='font-size:18px;font-weight:bold;'>"
result += " | ".join(f"{cls}: {percentages.get(cls,0)}%" for cls in ordered)
result += "</div>"
return result
# Merge and overlay
def create_overlay(image, segmentation_map, alpha=0.5):
if image.shape[:2] != segmentation_map.shape[:2]:
segmentation_map = cv2.resize(segmentation_map, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
return cv2.addWeighted(image, 1-alpha, segmentation_map, alpha, 0)
# Perform segmentation
def perform_segmentation(model, image_bgr):
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
image_tensor, orig_h, orig_w = preprocess_image(image_rgb)
with torch.no_grad():
prediction = model(image_tensor.to(device))
seg_map = generate_segmentation_map(prediction, orig_h, orig_w) # RGB
overlay = create_overlay(image_rgb, seg_map)
mask = prediction.argmax(1).squeeze().cpu().numpy()
analysis = create_analysis_result(mask)
return seg_map, overlay, analysis
# Single image processing
def process_coastal_image(location, input_image):
if input_image is None:
return None, None, "Please upload an image", "Not detected", None
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
model = load_model(MODEL_PATHS[location], device)
if model is None:
return None, None, f"Error: Failed to load model", "Not detected", None
ref_vector = load_reference_vector(REFERENCE_VECTOR_PATHS[location])
ref_images = load_reference_images(REFERENCE_IMAGE_DIRS[location])
outlier_status = "Not detected"
is_outlier = False
image_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
if len(ref_vector) > 0:
filtered, _ = detect_outliers(ref_images, [image_bgr], ref_vector)
is_outlier = len(filtered) == 0
elif len(ref_images) > 0:
filtered, _ = detect_outliers(ref_images, [image_bgr])
is_outlier = len(filtered) == 0
else:
print("Warning: No reference images or reference vectors available for outlier detection")
is_outlier = False
outlier_status = "Outlier Detection: <span style='color:red;font-weight:bold'>Failed</span>" if is_outlier else "Outlier Detection: <span style='color:green;font-weight:bold'>Passed</span>"
seg_map, overlay, analysis = perform_segmentation(model, image_bgr)
# Try uploading to DigitalOcean Spaces
url = "Local Storage"
try:
url = upload_mask(Image.fromarray(seg_map), prefix=location.replace(' ', '_'))
except Exception as e:
print(f"Upload failed: {e}")
url = f"Upload error: {str(e)}"
if is_outlier:
analysis = "<div style='color:red;font-weight:bold;margin-bottom:10px'>Warning: The image failed outlier detection, the result may be inaccurate!</div>" + analysis
return seg_map, overlay, analysis, outlier_status, url
# Spatial Alignment
def process_with_alignment(location, reference_image, input_image):
if reference_image is None or input_image is None:
return None, None, None, None, "Please upload both reference and target images", "Not processed", None
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
model = load_model(MODEL_PATHS[location], device)
if model is None:
return None, None, None, None, "Error: Failed to load model", "Not processed", None
ref_bgr = cv2.cvtColor(np.array(reference_image), cv2.COLOR_RGB2BGR)
tgt_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
try:
aligned, _ = align_images([ref_bgr, tgt_bgr], [np.zeros_like(ref_bgr), np.zeros_like(tgt_bgr)])
aligned_tgt_bgr = aligned[1]
except Exception as e:
print(f"Spatial alignment failed: {e}")
return None, None, None, None, f"Spatial alignment failed: {str(e)}", "Processing failed", None
seg_map, overlay, analysis = perform_segmentation(model, aligned_tgt_bgr)
# Try uploading to DigitalOcean Spaces
url = "Local Storage"
try:
url = upload_mask(Image.fromarray(seg_map), prefix="aligned_" + location.replace(' ', '_'))
except Exception as e:
print(f"Upload failed: {e}")
url = f"Upload error: {str(e)}"
status = "Spatial Alignment: <span style='color:green;font-weight:bold'>Completed</span>"
ref_rgb = cv2.cvtColor(ref_bgr, cv2.COLOR_BGR2RGB)
aligned_tgt_rgb = cv2.cvtColor(aligned_tgt_bgr, cv2.COLOR_BGR2RGB)
return ref_rgb, aligned_tgt_rgb, seg_map, overlay, analysis, status, url
# Create the Gradio interface
def create_interface():
# Set unified display size
disp_w, disp_h = 683, 512 # Maintain aspect ratio
with gr.Blocks(title="Coastal Erosion Analysis System") as demo:
gr.Markdown("""# Coastal Erosion Analysis System
Upload coastal images for analysis, including segmentation and spatial alignment.""")
with gr.Tabs():
with gr.TabItem("Single Image Segmentation"):
with gr.Row():
loc1 = gr.Radio(list(MODEL_PATHS.keys()), label="Select Model", value=list(MODEL_PATHS.keys())[0])
with gr.Row():
inp = gr.Image(label="Input Image", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
seg = gr.Image(label="Segmentation Map", type="numpy", height=disp_h, width=disp_w)
ovl = gr.Image(label="Overlay Image", type="numpy", height=disp_h, width=disp_w)
with gr.Row():
btn1 = gr.Button("Run Segmentation")
url1 = gr.Text(label="Segmentation Image URL")
status1 = gr.HTML(label="Outlier Detection Status")
res1 = gr.HTML(label="Analysis Result")
btn1.click(fn=process_coastal_image, inputs=[loc1, inp], outputs=[seg, ovl, res1, status1, url1])
with gr.TabItem("Spatial Alignment Segmentation"):
with gr.Row():
loc2 = gr.Radio(list(MODEL_PATHS.keys()), label="Select Model", value=list(MODEL_PATHS.keys())[0])
with gr.Row():
ref_img = gr.Image(label="Reference Image", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
tgt_img = gr.Image(label="Target Image", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
with gr.Row():
btn2 = gr.Button("Run Spatial Alignment and Segmentation")
with gr.Row():
orig = gr.Image(label="Original Image", type="numpy", height=disp_h, width=disp_w)
aligned = gr.Image(label="Aligned Image", type="numpy", height=disp_h, width=disp_w)
with gr.Row():
seg2 = gr.Image(label="Segmentation Map", type="numpy", height=disp_h, width=disp_w)
ovl2 = gr.Image(label="Overlay Image", type="numpy", height=disp_h, width=disp_w)
url2 = gr.Text(label="Segmentation Image URL")
status2 = gr.HTML(label="Alignment Status")
res2 = gr.HTML(label="Analysis Result")
btn2.click(fn=process_with_alignment, inputs=[loc2, ref_img, tgt_img], outputs=[orig, aligned, seg2, ovl2, res2, status2, url2])
return demo
if __name__ == "__main__":
# Create necessary directories
for path in ["models", "reference_images/MM", "reference_images/SJ"]:
os.makedirs(path, exist_ok=True)
# Check if model files exist
for p in MODEL_PATHS.values():
if not os.path.exists(p):
print(f"Warning: Model file {p} does not exist!")
# Check if DigitalOcean credentials exist
do_creds = [
os.environ.get('DO_SPACES_KEY'),
os.environ.get('DO_SPACES_SECRET'),
os.environ.get('DO_SPACES_REGION'),
os.environ.get('DO_SPACES_BUCKET')
]
if not all(do_creds):
print("Warning: Incomplete DigitalOcean Spaces credentials, upload functionality may not work")
# Create and launch the interface
demo = create_interface()
if HF_SPACE:
demo.launch()
else:
demo.launch(share=True)