Spaces:
Running
Running
File size: 15,270 Bytes
3924e13 40aaca9 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 40aaca9 b2048d6 40aaca9 b2048d6 40aaca9 b2048d6 40aaca9 3924e13 b2048d6 40aaca9 b2048d6 40aaca9 b2048d6 40aaca9 b2048d6 40aaca9 b2048d6 40aaca9 b2048d6 40aaca9 b2048d6 40aaca9 b2048d6 40aaca9 b2048d6 3924e13 b2048d6 3924e13 b2048d6 40aaca9 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 40aaca9 b2048d6 40aaca9 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 40aaca9 b2048d6 40aaca9 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 40aaca9 3924e13 b2048d6 3924e13 40aaca9 3924e13 40aaca9 b2048d6 40aaca9 3924e13 b2048d6 3924e13 b2048d6 40aaca9 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 40aaca9 b2048d6 3924e13 b2048d6 40aaca9 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 40aaca9 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 b2048d6 3924e13 40aaca9 b2048d6 3924e13 b2048d6 40aaca9 b2048d6 40aaca9 b2048d6 40aaca9 b2048d6 3924e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import cv2
import numpy as np
import torch
import gradio as gr
import segmentation_models_pytorch as smp
from PIL import Image
import boto3
import uuid
import io
from glob import glob
import os
from pipeline.ImgOutlier import detect_outliers
from pipeline.normalization import align_images
# Detect if running inside Hugging Face Spaces
HF_SPACE = os.environ.get('SPACE_ID') is not None
# DigitalOcean Spaces upload function
def upload_mask(image, prefix="mask"):
"""
Upload segmentation mask image to DigitalOcean Spaces
Args:
image: PIL Image object
prefix: filename prefix
Returns:
Public URL of the uploaded file
"""
try:
# Get credentials from environment variables
do_key = os.environ.get('DO_SPACES_KEY')
do_secret = os.environ.get('DO_SPACES_SECRET')
do_region = os.environ.get('DO_SPACES_REGION')
do_bucket = os.environ.get('DO_SPACES_BUCKET')
# Check if credentials exist
if not all([do_key, do_secret, do_region, do_bucket]):
return "DigitalOcean credentials not set"
# Create S3 client
session = boto3.session.Session()
client = session.client('s3',
region_name=do_region,
endpoint_url=f'https://{do_region}.digitaloceanspaces.com',
aws_access_key_id=do_key,
aws_secret_access_key=do_secret)
# Generate unique filename
filename = f"{prefix}_{uuid.uuid4().hex}.png"
# Convert image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
# Upload to Spaces
client.upload_fileobj(
img_byte_arr,
do_bucket,
filename,
ExtraArgs={'ACL': 'public-read', 'ContentType': 'image/png'}
)
# Return public URL
url = f'https://{do_bucket}.{do_region}.digitaloceanspaces.com/{filename}'
return url
except Exception as e:
print(f"Upload failed: {str(e)}")
return f"Upload error: {str(e)}"
# Global Configuration
MODEL_PATHS = {
"Metal Marcy": "models/MM_best_model.pth",
"Silhouette Jaenette": "models/SJ_best_model.pth"
}
REFERENCE_VECTOR_PATHS = {
"Metal Marcy": "models/MM_mean.npy",
"Silhouette Jaenette": "models/SJ_mean.npy"
}
REFERENCE_IMAGE_DIRS = {
"Metal Marcy": "reference_images/MM",
"Silhouette Jaenette": "reference_images/SJ"
}
# Category names and color mapping
CLASSES = ['background', 'cobbles', 'drysand', 'plant', 'sky', 'water', 'wetsand']
COLORS = [
[0, 0, 0], # background - black
[139, 137, 137], # cobbles - dark gray
[255, 228, 181], # drysand - light yellow
[0, 128, 0], # plant - green
[135, 206, 235], # sky - sky blue
[0, 0, 255], # water - blue
[194, 178, 128] # wetsand - sand brown
]
# Load model function
def load_model(model_path, device="cuda"):
try:
# If running inside HF Spaces, default to CPU
if HF_SPACE:
device = "cpu"
elif not torch.cuda.is_available():
device = "cpu"
model = smp.create_model(
"DeepLabV3Plus",
encoder_name="efficientnet-b6",
in_channels=3,
classes=len(CLASSES),
encoder_weights=None
)
state_dict = torch.load(model_path, map_location=device)
if all(k.startswith('model.') for k in state_dict.keys()):
state_dict = {k[6:]: v for k, v in state_dict.items()}
model.load_state_dict(state_dict)
model.to(device)
model.eval()
print(f"Model loaded successfully: {model_path}")
return model
except Exception as e:
print(f"Model loading failed: {e}")
return None
# Load reference vector
def load_reference_vector(vector_path):
try:
if not os.path.exists(vector_path):
print(f"Reference vector file not found: {vector_path}")
return []
ref_vector = np.load(vector_path)
print(f"Reference vector loaded successfully: {vector_path}")
return ref_vector
except Exception as e:
print(f"Reference vector loading failed {vector_path}: {e}")
return []
# Load reference images
def load_reference_images(ref_dir):
try:
if not os.path.exists(ref_dir):
print(f"Reference image directory not found: {ref_dir}")
os.makedirs(ref_dir, exist_ok=True)
return []
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.bmp']
image_files = []
for ext in image_extensions:
image_files.extend(glob(os.path.join(ref_dir, ext)))
image_files.sort()
reference_images = []
for file in image_files[:4]:
img = cv2.imread(file)
if img is not None:
reference_images.append(img)
print(f"Loaded {len(reference_images)} images from {ref_dir}")
return reference_images
except Exception as e:
print(f"Image loading failed {ref_dir}: {e}")
return []
# Preprocess the image
def preprocess_image(image):
if image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
orig_h, orig_w = image.shape[:2]
image_resized = cv2.resize(image, (1024, 1024))
image_norm = image_resized.astype(np.float32) / 255.0
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image_norm = (image_norm - mean) / std
image_tensor = torch.from_numpy(image_norm.transpose(2, 0, 1)).float().unsqueeze(0)
return image_tensor, orig_h, orig_w
# Generate segmentation map and visualization
def generate_segmentation_map(prediction, orig_h, orig_w):
mask = prediction.argmax(1).squeeze().cpu().numpy().astype(np.uint8)
mask_resized = cv2.resize(mask, (orig_w, orig_h), interpolation=cv2.INTER_NEAREST)
kernel = np.ones((5, 5), np.uint8)
processed_mask = mask_resized.copy()
for idx in range(1, len(CLASSES)):
class_mask = (mask_resized == idx).astype(np.uint8)
dilated_mask = cv2.dilate(class_mask, kernel, iterations=2)
dilated_effect = dilated_mask & (mask_resized == 0)
processed_mask[dilated_effect > 0] = idx
segmentation_map = np.zeros((orig_h, orig_w, 3), dtype=np.uint8)
for idx, color in enumerate(COLORS):
segmentation_map[processed_mask == idx] = color
return segmentation_map
# Analysis result HTML
def create_analysis_result(mask):
total_pixels = mask.size
percentages = {cls: round((np.sum(mask == i) / total_pixels) * 100, 1)
for i, cls in enumerate(CLASSES)}
ordered = ['sky', 'cobbles', 'plant', 'drysand', 'wetsand', 'water']
result = "<div style='font-size:18px;font-weight:bold;'>"
result += " | ".join(f"{cls}: {percentages.get(cls,0)}%" for cls in ordered)
result += "</div>"
return result
# Merge and overlay
def create_overlay(image, segmentation_map, alpha=0.5):
if image.shape[:2] != segmentation_map.shape[:2]:
segmentation_map = cv2.resize(segmentation_map, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
return cv2.addWeighted(image, 1-alpha, segmentation_map, alpha, 0)
# Perform segmentation
def perform_segmentation(model, image_bgr):
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
image_tensor, orig_h, orig_w = preprocess_image(image_rgb)
with torch.no_grad():
prediction = model(image_tensor.to(device))
seg_map = generate_segmentation_map(prediction, orig_h, orig_w) # RGB
overlay = create_overlay(image_rgb, seg_map)
mask = prediction.argmax(1).squeeze().cpu().numpy()
analysis = create_analysis_result(mask)
return seg_map, overlay, analysis
# Single image processing
def process_coastal_image(location, input_image):
if input_image is None:
return None, None, "Please upload an image", "Not detected", None
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
model = load_model(MODEL_PATHS[location], device)
if model is None:
return None, None, f"Error: Failed to load model", "Not detected", None
ref_vector = load_reference_vector(REFERENCE_VECTOR_PATHS[location])
ref_images = load_reference_images(REFERENCE_IMAGE_DIRS[location])
outlier_status = "Not detected"
is_outlier = False
image_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
if len(ref_vector) > 0:
filtered, _ = detect_outliers(ref_images, [image_bgr], ref_vector)
is_outlier = len(filtered) == 0
elif len(ref_images) > 0:
filtered, _ = detect_outliers(ref_images, [image_bgr])
is_outlier = len(filtered) == 0
else:
print("Warning: No reference images or reference vectors available for outlier detection")
is_outlier = False
outlier_status = "Outlier Detection: <span style='color:red;font-weight:bold'>Failed</span>" if is_outlier else "Outlier Detection: <span style='color:green;font-weight:bold'>Passed</span>"
seg_map, overlay, analysis = perform_segmentation(model, image_bgr)
# Try uploading to DigitalOcean Spaces
url = "Local Storage"
try:
url = upload_mask(Image.fromarray(seg_map), prefix=location.replace(' ', '_'))
except Exception as e:
print(f"Upload failed: {e}")
url = f"Upload error: {str(e)}"
if is_outlier:
analysis = "<div style='color:red;font-weight:bold;margin-bottom:10px'>Warning: The image failed outlier detection, the result may be inaccurate!</div>" + analysis
return seg_map, overlay, analysis, outlier_status, url
# Spatial Alignment
def process_with_alignment(location, reference_image, input_image):
if reference_image is None or input_image is None:
return None, None, None, None, "Please upload both reference and target images", "Not processed", None
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
model = load_model(MODEL_PATHS[location], device)
if model is None:
return None, None, None, None, "Error: Failed to load model", "Not processed", None
ref_bgr = cv2.cvtColor(np.array(reference_image), cv2.COLOR_RGB2BGR)
tgt_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
try:
aligned, _ = align_images([ref_bgr, tgt_bgr], [np.zeros_like(ref_bgr), np.zeros_like(tgt_bgr)])
aligned_tgt_bgr = aligned[1]
except Exception as e:
print(f"Spatial alignment failed: {e}")
return None, None, None, None, f"Spatial alignment failed: {str(e)}", "Processing failed", None
seg_map, overlay, analysis = perform_segmentation(model, aligned_tgt_bgr)
# Try uploading to DigitalOcean Spaces
url = "Local Storage"
try:
url = upload_mask(Image.fromarray(seg_map), prefix="aligned_" + location.replace(' ', '_'))
except Exception as e:
print(f"Upload failed: {e}")
url = f"Upload error: {str(e)}"
status = "Spatial Alignment: <span style='color:green;font-weight:bold'>Completed</span>"
ref_rgb = cv2.cvtColor(ref_bgr, cv2.COLOR_BGR2RGB)
aligned_tgt_rgb = cv2.cvtColor(aligned_tgt_bgr, cv2.COLOR_BGR2RGB)
return ref_rgb, aligned_tgt_rgb, seg_map, overlay, analysis, status, url
# Create the Gradio interface
def create_interface():
# Set unified display size
disp_w, disp_h = 683, 512 # Maintain aspect ratio
with gr.Blocks(title="Coastal Erosion Analysis System") as demo:
gr.Markdown("""# Coastal Erosion Analysis System
Upload coastal images for analysis, including segmentation and spatial alignment.""")
with gr.Tabs():
with gr.TabItem("Single Image Segmentation"):
with gr.Row():
loc1 = gr.Radio(list(MODEL_PATHS.keys()), label="Select Model", value=list(MODEL_PATHS.keys())[0])
with gr.Row():
inp = gr.Image(label="Input Image", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
seg = gr.Image(label="Segmentation Map", type="numpy", height=disp_h, width=disp_w)
ovl = gr.Image(label="Overlay Image", type="numpy", height=disp_h, width=disp_w)
with gr.Row():
btn1 = gr.Button("Run Segmentation")
url1 = gr.Text(label="Segmentation Image URL")
status1 = gr.HTML(label="Outlier Detection Status")
res1 = gr.HTML(label="Analysis Result")
btn1.click(fn=process_coastal_image, inputs=[loc1, inp], outputs=[seg, ovl, res1, status1, url1])
with gr.TabItem("Spatial Alignment Segmentation"):
with gr.Row():
loc2 = gr.Radio(list(MODEL_PATHS.keys()), label="Select Model", value=list(MODEL_PATHS.keys())[0])
with gr.Row():
ref_img = gr.Image(label="Reference Image", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
tgt_img = gr.Image(label="Target Image", type="numpy", image_mode="RGB", height=disp_h, width=disp_w)
with gr.Row():
btn2 = gr.Button("Run Spatial Alignment and Segmentation")
with gr.Row():
orig = gr.Image(label="Original Image", type="numpy", height=disp_h, width=disp_w)
aligned = gr.Image(label="Aligned Image", type="numpy", height=disp_h, width=disp_w)
with gr.Row():
seg2 = gr.Image(label="Segmentation Map", type="numpy", height=disp_h, width=disp_w)
ovl2 = gr.Image(label="Overlay Image", type="numpy", height=disp_h, width=disp_w)
url2 = gr.Text(label="Segmentation Image URL")
status2 = gr.HTML(label="Alignment Status")
res2 = gr.HTML(label="Analysis Result")
btn2.click(fn=process_with_alignment, inputs=[loc2, ref_img, tgt_img], outputs=[orig, aligned, seg2, ovl2, res2, status2, url2])
return demo
if __name__ == "__main__":
# Create necessary directories
for path in ["models", "reference_images/MM", "reference_images/SJ"]:
os.makedirs(path, exist_ok=True)
# Check if model files exist
for p in MODEL_PATHS.values():
if not os.path.exists(p):
print(f"Warning: Model file {p} does not exist!")
# Check if DigitalOcean credentials exist
do_creds = [
os.environ.get('DO_SPACES_KEY'),
os.environ.get('DO_SPACES_SECRET'),
os.environ.get('DO_SPACES_REGION'),
os.environ.get('DO_SPACES_BUCKET')
]
if not all(do_creds):
print("Warning: Incomplete DigitalOcean Spaces credentials, upload functionality may not work")
# Create and launch the interface
demo = create_interface()
if HF_SPACE:
demo.launch()
else:
demo.launch(share=True) |