Aumkeshchy2003 commited on
Commit
fa9a701
·
verified ·
1 Parent(s): 359afbb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -80
app.py CHANGED
@@ -12,109 +12,91 @@ os.makedirs("models", exist_ok=True)
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
  print(f"Using device: {device}")
14
 
 
15
  model_path = Path("models/yolov5n.pt")
16
- if model_path.exists():
17
- print(f"Loading model from cache: {model_path}")
18
- model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True, source="local", path=str(model_path)).to(device)
19
- else:
20
- print("Downloading YOLOv5n model and caching...")
21
- model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
22
- torch.save(model.state_dict(), model_path)
23
 
24
- # Model configurations
25
- model.conf = 0.6
26
- model.iou = 0.6
27
- model.classes = None
28
 
 
29
  if device.type == "cuda":
30
- model.half()
 
31
  else:
32
- torch.set_num_threads(os.cpu_count())
 
33
 
34
  model.eval()
35
 
36
- np.random.seed(42)
37
- colors = np.random.uniform(0, 255, size=(len(model.names), 3))
38
 
39
- total_inference_time = 0
40
- inference_count = 0
41
 
42
  def detect_objects(image):
43
- global total_inference_time, inference_count
44
 
45
  if image is None:
46
  return None
47
 
48
- start_time = time.time()
49
- output_image = image.copy()
50
- input_size = 640
51
 
52
- with torch.no_grad():
53
- results = model(image, size=input_size)
 
 
54
 
55
- inference_time = time.time() - start_time
56
- total_inference_time += inference_time
57
- inference_count += 1
58
- avg_inference_time = total_inference_time / inference_count
 
 
 
59
 
60
- detections = results.pred[0].cpu().numpy()
 
 
61
 
62
- for *xyxy, conf, cls in detections:
63
- x1, y1, x2, y2 = map(int, xyxy)
64
- class_id = int(cls)
65
- color = colors[class_id].tolist()
66
-
67
- # Thicker bounding boxes
68
- cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
69
-
70
- label = f"{model.names[class_id]} {conf:.2f}"
71
- font_scale, font_thickness = 0.9, 2
72
- (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
73
-
74
- cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
75
- cv2.putText(output_image, label, (x1 + 5, y1 - 5),
76
- cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
77
 
78
- fps = 1 / inference_time
 
 
 
 
 
79
 
80
- # Stylish FPS display
81
- overlay = output_image.copy()
82
- cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1)
83
- output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
84
- cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
85
- cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
86
- cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
87
- cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
88
 
89
- return output_image
90
 
91
- example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
92
- os.makedirs("examples", exist_ok=True)
93
 
94
- with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
95
- gr.Markdown("""
96
- # Optimized YOLOv5 Object Detection
97
- Detects objects using YOLOv5 with enhanced visualization and FPS tracking.
98
- """)
99
-
100
  with gr.Row():
101
- with gr.Column(scale=1):
102
- input_image = gr.Image(label="Input Image", type="numpy")
103
- submit_button = gr.Button("Submit", variant="primary")
104
- clear_button = gr.Button("Clear")
105
-
106
- with gr.Column(scale=1):
107
- output_image = gr.Image(label="Detected Objects", type="numpy")
108
-
109
- gr.Examples(
110
- examples=example_images,
111
- inputs=input_image,
112
- outputs=output_image,
113
- fn=detect_objects,
114
- cache_examples=True
115
- )
116
-
117
- submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
118
- clear_button.click(lambda: (None, None), None, [input_image, output_image])
119
 
120
- demo.launch()
 
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
  print(f"Using device: {device}")
14
 
15
+ # Use smaller YOLOv5n model instead of x-large
16
  model_path = Path("models/yolov5n.pt")
17
+ if not model_path.exists():
18
+ print("Downloading and caching YOLOv5n...")
19
+ torch.hub.download_url_to_file("https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt", "models/yolov5n.pt")
20
+
21
+ # Optimized model loading
22
+ model = torch.hub.load("ultralytics/yolov5", "custom", path=str(model_path), autoshape=False).to(device)
 
23
 
24
+ # Model optimizations
25
+ model.conf = 0.5 # Slightly lower confidence threshold
26
+ model.iou = 0.45 # Lower IoU threshold for faster NMS
27
+ model.classes = None # Detect all classes
28
 
29
+ # Precision optimizations
30
  if device.type == "cuda":
31
+ model.half() # FP16 inference
32
+ torch.backends.cudnn.benchmark = True # Better CUDA performance
33
  else:
34
+ model.float()
35
+ torch.set_num_threads(2) # Limit CPU threads for better resource management
36
 
37
  model.eval()
38
 
39
+ # Simplified color generation
40
+ colors = np.random.rand(len(model.names), 3) * 255
41
 
42
+ total_time = 0
43
+ frame_count = 0
44
 
45
  def detect_objects(image):
46
+ global total_time, frame_count
47
 
48
  if image is None:
49
  return None
50
 
51
+ start = time.perf_counter()
 
 
52
 
53
+ # Reduce input size and use optimized preprocessing
54
+ input_size = 320 # Reduced from 640
55
+ im = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
56
+ im = cv2.resize(im, (input_size, input_size))
57
 
58
+ with torch.no_grad():
59
+ if device.type == "cuda":
60
+ im = torch.from_numpy(im).to(device).half().permute(2, 0, 1).unsqueeze(0) / 255
61
+ else:
62
+ im = torch.from_numpy(im).to(device).float().permute(2, 0, 1).unsqueeze(0) / 255
63
+
64
+ pred = model(im, augment=False)[0]
65
 
66
+ # Faster post-processing
67
+ pred = pred.float() if device.type == "cpu" else pred.half()
68
+ pred = non_max_suppression(pred, model.conf, model.iou, agnostic=False)[0]
69
 
70
+ # Optimized visualization
71
+ output = image.copy()
72
+ if pred is not None and len(pred):
73
+ pred[:, :4] = scale_coords(im.shape[2:], pred[:, :4], output.shape).round()
74
+ for *xyxy, conf, cls in pred:
75
+ x1, y1, x2, y2 = map(int, xyxy)
76
+ cv2.rectangle(output, (x1, y1), (x2, y2), colors[int(cls)].tolist(), 2)
 
 
 
 
 
 
 
 
77
 
78
+ # FPS calculation
79
+ dt = time.perf_counter() - start
80
+ total_time += dt
81
+ frame_count += 1
82
+ fps = 1 / dt
83
+ avg_fps = frame_count / total_time
84
 
85
+ # Simplified FPS display
86
+ cv2.putText(output, f"FPS: {fps:.1f}", (10, 30),
87
+ cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
 
 
 
 
 
88
 
89
+ return output
90
 
91
+ # Use smaller example images
92
+ example_images = ["pexels-hikaique-109919.jpg", "spring_street_after.jpg"]
93
 
94
+ with gr.Blocks(title="Optimized YOLOv5") as demo:
95
+ gr.Markdown("# Real-Time YOLOv5 Object Detection")
 
 
 
 
96
  with gr.Row():
97
+ input_img = gr.Image(label="Input", source="webcam" if os.getenv('SPACE_ID') else None)
98
+ output_img = gr.Image(label="Output")
99
+ gr.Examples(examples=example_images, inputs=input_img, outputs=output_img, fn=detect_objects)
100
+ input_img.change(fn=detect_objects, inputs=input_img, outputs=output_img)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
+ demo.launch()