Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,109 +12,91 @@ os.makedirs("models", exist_ok=True)
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
print(f"Using device: {device}")
|
14 |
|
|
|
15 |
model_path = Path("models/yolov5n.pt")
|
16 |
-
if model_path.exists():
|
17 |
-
print(
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
torch.save(model.state_dict(), model_path)
|
23 |
|
24 |
-
# Model
|
25 |
-
model.conf = 0.
|
26 |
-
model.iou = 0.
|
27 |
-
model.classes = None
|
28 |
|
|
|
29 |
if device.type == "cuda":
|
30 |
-
model.half()
|
|
|
31 |
else:
|
32 |
-
|
|
|
33 |
|
34 |
model.eval()
|
35 |
|
36 |
-
|
37 |
-
colors = np.random.
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
42 |
def detect_objects(image):
|
43 |
-
global
|
44 |
|
45 |
if image is None:
|
46 |
return None
|
47 |
|
48 |
-
|
49 |
-
output_image = image.copy()
|
50 |
-
input_size = 640
|
51 |
|
52 |
-
|
53 |
-
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
label = f"{model.names[class_id]} {conf:.2f}"
|
71 |
-
font_scale, font_thickness = 0.9, 2
|
72 |
-
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
|
73 |
-
|
74 |
-
cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
|
75 |
-
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
|
76 |
-
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
|
84 |
-
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
|
85 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
86 |
-
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
|
87 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
88 |
|
89 |
-
return
|
90 |
|
91 |
-
|
92 |
-
|
93 |
|
94 |
-
with gr.Blocks(title="Optimized YOLOv5
|
95 |
-
gr.Markdown(""
|
96 |
-
# Optimized YOLOv5 Object Detection
|
97 |
-
Detects objects using YOLOv5 with enhanced visualization and FPS tracking.
|
98 |
-
""")
|
99 |
-
|
100 |
with gr.Row():
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
with gr.Column(scale=1):
|
107 |
-
output_image = gr.Image(label="Detected Objects", type="numpy")
|
108 |
-
|
109 |
-
gr.Examples(
|
110 |
-
examples=example_images,
|
111 |
-
inputs=input_image,
|
112 |
-
outputs=output_image,
|
113 |
-
fn=detect_objects,
|
114 |
-
cache_examples=True
|
115 |
-
)
|
116 |
-
|
117 |
-
submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
|
118 |
-
clear_button.click(lambda: (None, None), None, [input_image, output_image])
|
119 |
|
120 |
-
demo.launch()
|
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
print(f"Using device: {device}")
|
14 |
|
15 |
+
# Use smaller YOLOv5n model instead of x-large
|
16 |
model_path = Path("models/yolov5n.pt")
|
17 |
+
if not model_path.exists():
|
18 |
+
print("Downloading and caching YOLOv5n...")
|
19 |
+
torch.hub.download_url_to_file("https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt", "models/yolov5n.pt")
|
20 |
+
|
21 |
+
# Optimized model loading
|
22 |
+
model = torch.hub.load("ultralytics/yolov5", "custom", path=str(model_path), autoshape=False).to(device)
|
|
|
23 |
|
24 |
+
# Model optimizations
|
25 |
+
model.conf = 0.5 # Slightly lower confidence threshold
|
26 |
+
model.iou = 0.45 # Lower IoU threshold for faster NMS
|
27 |
+
model.classes = None # Detect all classes
|
28 |
|
29 |
+
# Precision optimizations
|
30 |
if device.type == "cuda":
|
31 |
+
model.half() # FP16 inference
|
32 |
+
torch.backends.cudnn.benchmark = True # Better CUDA performance
|
33 |
else:
|
34 |
+
model.float()
|
35 |
+
torch.set_num_threads(2) # Limit CPU threads for better resource management
|
36 |
|
37 |
model.eval()
|
38 |
|
39 |
+
# Simplified color generation
|
40 |
+
colors = np.random.rand(len(model.names), 3) * 255
|
41 |
|
42 |
+
total_time = 0
|
43 |
+
frame_count = 0
|
44 |
|
45 |
def detect_objects(image):
|
46 |
+
global total_time, frame_count
|
47 |
|
48 |
if image is None:
|
49 |
return None
|
50 |
|
51 |
+
start = time.perf_counter()
|
|
|
|
|
52 |
|
53 |
+
# Reduce input size and use optimized preprocessing
|
54 |
+
input_size = 320 # Reduced from 640
|
55 |
+
im = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
56 |
+
im = cv2.resize(im, (input_size, input_size))
|
57 |
|
58 |
+
with torch.no_grad():
|
59 |
+
if device.type == "cuda":
|
60 |
+
im = torch.from_numpy(im).to(device).half().permute(2, 0, 1).unsqueeze(0) / 255
|
61 |
+
else:
|
62 |
+
im = torch.from_numpy(im).to(device).float().permute(2, 0, 1).unsqueeze(0) / 255
|
63 |
+
|
64 |
+
pred = model(im, augment=False)[0]
|
65 |
|
66 |
+
# Faster post-processing
|
67 |
+
pred = pred.float() if device.type == "cpu" else pred.half()
|
68 |
+
pred = non_max_suppression(pred, model.conf, model.iou, agnostic=False)[0]
|
69 |
|
70 |
+
# Optimized visualization
|
71 |
+
output = image.copy()
|
72 |
+
if pred is not None and len(pred):
|
73 |
+
pred[:, :4] = scale_coords(im.shape[2:], pred[:, :4], output.shape).round()
|
74 |
+
for *xyxy, conf, cls in pred:
|
75 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
76 |
+
cv2.rectangle(output, (x1, y1), (x2, y2), colors[int(cls)].tolist(), 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# FPS calculation
|
79 |
+
dt = time.perf_counter() - start
|
80 |
+
total_time += dt
|
81 |
+
frame_count += 1
|
82 |
+
fps = 1 / dt
|
83 |
+
avg_fps = frame_count / total_time
|
84 |
|
85 |
+
# Simplified FPS display
|
86 |
+
cv2.putText(output, f"FPS: {fps:.1f}", (10, 30),
|
87 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
return output
|
90 |
|
91 |
+
# Use smaller example images
|
92 |
+
example_images = ["pexels-hikaique-109919.jpg", "spring_street_after.jpg"]
|
93 |
|
94 |
+
with gr.Blocks(title="Optimized YOLOv5") as demo:
|
95 |
+
gr.Markdown("# Real-Time YOLOv5 Object Detection")
|
|
|
|
|
|
|
|
|
96 |
with gr.Row():
|
97 |
+
input_img = gr.Image(label="Input", source="webcam" if os.getenv('SPACE_ID') else None)
|
98 |
+
output_img = gr.Image(label="Output")
|
99 |
+
gr.Examples(examples=example_images, inputs=input_img, outputs=output_img, fn=detect_objects)
|
100 |
+
input_img.change(fn=detect_objects, inputs=input_img, outputs=output_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
demo.launch()
|