Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,6 @@ import time
|
|
6 |
import os
|
7 |
from pathlib import Path
|
8 |
from PIL import Image
|
9 |
-
from threading import Thread
|
10 |
-
from queue import Queue
|
11 |
|
12 |
# Create cache directory for models
|
13 |
os.makedirs("models", exist_ok=True)
|
@@ -26,9 +24,9 @@ else:
|
|
26 |
torch.save(model.state_dict(), model_path)
|
27 |
|
28 |
# Optimize model for speed
|
29 |
-
model.conf = 0.25 #
|
30 |
-
model.iou = 0.45
|
31 |
-
model.classes = None
|
32 |
model.max_det = 100 # Limit maximum detections
|
33 |
|
34 |
if device.type == "cuda":
|
@@ -42,27 +40,6 @@ model.eval()
|
|
42 |
np.random.seed(42)
|
43 |
colors = np.random.randint(0, 255, size=(len(model.names), 3), dtype=np.uint8)
|
44 |
|
45 |
-
# Async video processing
|
46 |
-
def process_frame(model, frame_queue, result_queue):
|
47 |
-
while True:
|
48 |
-
if frame_queue.empty():
|
49 |
-
time.sleep(0.001)
|
50 |
-
continue
|
51 |
-
|
52 |
-
frame_data = frame_queue.get()
|
53 |
-
if frame_data is None: # Signal to stop
|
54 |
-
result_queue.put(None)
|
55 |
-
break
|
56 |
-
|
57 |
-
frame, frame_index = frame_data
|
58 |
-
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
59 |
-
|
60 |
-
# Use a smaller inference size for speed
|
61 |
-
results = model(img, size=384) # Reduced from 640 to 384
|
62 |
-
|
63 |
-
detections = results.xyxy[0].cpu().numpy()
|
64 |
-
result_queue.put((frame, detections, frame_index))
|
65 |
-
|
66 |
def process_video(video_path):
|
67 |
# Check if video_path is None or empty
|
68 |
if video_path is None or video_path == "":
|
@@ -81,120 +58,68 @@ def process_video(video_path):
|
|
81 |
frame_height = int(cap.get(4))
|
82 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
83 |
|
84 |
-
#
|
85 |
-
fourcc = cv2.VideoWriter_fourcc(*'
|
86 |
output_path = "output_video.mp4"
|
87 |
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
|
92 |
|
93 |
-
#
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
|
98 |
-
|
99 |
-
start_time = time.time()
|
100 |
-
processing_started = False
|
101 |
-
frames_buffer = {}
|
102 |
-
next_frame_to_write = 0
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
break
|
109 |
-
|
110 |
-
if not processing_started:
|
111 |
-
processing_started = True
|
112 |
-
start_time = time.time()
|
113 |
-
|
114 |
-
frame_queue.put((frame, total_frames))
|
115 |
-
total_frames += 1
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
cv2.rectangle(buffer_frame, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
|
138 |
-
label = f"{model.names[class_id]} {conf:.2f}"
|
139 |
-
# Black text with white outline for better visibility
|
140 |
-
cv2.putText(buffer_frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX,
|
141 |
-
0.7, (0, 0, 0), 2, cv2.LINE_AA)
|
142 |
-
|
143 |
-
# Calculate elapsed time and FPS
|
144 |
-
elapsed = time.time() - start_time
|
145 |
-
current_fps = next_frame_to_write / elapsed if elapsed > 0 else 0
|
146 |
-
|
147 |
-
# Add FPS counter with black text
|
148 |
-
cv2.putText(buffer_frame, f"FPS: {current_fps:.2f}", (20, 40),
|
149 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
|
150 |
-
|
151 |
-
out.write(buffer_frame)
|
152 |
-
next_frame_to_write += 1
|
153 |
|
154 |
-
|
155 |
-
|
|
|
156 |
|
157 |
-
#
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
if result is None:
|
165 |
-
break
|
166 |
-
|
167 |
-
processed_frame, detections, frame_idx = result
|
168 |
-
frames_buffer[frame_idx] = (processed_frame, detections)
|
169 |
|
170 |
-
#
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
for *xyxy, conf, cls in buffer_detections:
|
176 |
-
if conf < 0.35:
|
177 |
-
continue
|
178 |
-
x1, y1, x2, y2 = map(int, xyxy)
|
179 |
-
class_id = int(cls)
|
180 |
-
color = colors[class_id].tolist()
|
181 |
-
cv2.rectangle(buffer_frame, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
|
182 |
-
label = f"{model.names[class_id]} {conf:.2f}"
|
183 |
-
cv2.putText(buffer_frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX,
|
184 |
-
0.7, (0, 0, 0), 2, cv2.LINE_AA)
|
185 |
-
|
186 |
-
# Add FPS counter
|
187 |
-
elapsed = time.time() - start_time
|
188 |
-
current_fps = next_frame_to_write / elapsed if elapsed > 0 else 0
|
189 |
-
cv2.putText(buffer_frame, f"FPS: {current_fps:.2f}", (20, 40),
|
190 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
|
191 |
-
|
192 |
-
out.write(buffer_frame)
|
193 |
-
next_frame_to_write += 1
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
out.release()
|
198 |
|
199 |
return output_path
|
200 |
|
|
|
6 |
import os
|
7 |
from pathlib import Path
|
8 |
from PIL import Image
|
|
|
|
|
9 |
|
10 |
# Create cache directory for models
|
11 |
os.makedirs("models", exist_ok=True)
|
|
|
24 |
torch.save(model.state_dict(), model_path)
|
25 |
|
26 |
# Optimize model for speed
|
27 |
+
model.conf = 0.25 # Lower confidence threshold for speed
|
28 |
+
model.iou = 0.45 # Better IoU threshold
|
29 |
+
model.classes = None
|
30 |
model.max_det = 100 # Limit maximum detections
|
31 |
|
32 |
if device.type == "cuda":
|
|
|
40 |
np.random.seed(42)
|
41 |
colors = np.random.randint(0, 255, size=(len(model.names), 3), dtype=np.uint8)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def process_video(video_path):
|
44 |
# Check if video_path is None or empty
|
45 |
if video_path is None or video_path == "":
|
|
|
58 |
frame_height = int(cap.get(4))
|
59 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
60 |
|
61 |
+
# Use mp4v codec which is more widely supported
|
62 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
63 |
output_path = "output_video.mp4"
|
64 |
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
65 |
|
66 |
+
# For FPS calculation
|
67 |
+
frame_count = 0
|
68 |
+
start_time = time.time()
|
69 |
|
70 |
+
# Skip frames for faster processing if needed
|
71 |
+
frame_skip = 0
|
72 |
+
if device.type != "cuda": # Skip more frames on CPU
|
73 |
+
frame_skip = 1
|
74 |
|
75 |
+
frame_idx = 0
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
while cap.isOpened():
|
78 |
+
ret, frame = cap.read()
|
79 |
+
if not ret:
|
80 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
frame_idx += 1
|
83 |
+
if frame_skip > 0 and frame_idx % (frame_skip + 1) != 0:
|
84 |
+
out.write(frame) # Write original frame
|
85 |
+
continue
|
86 |
+
|
87 |
+
# Convert frame for YOLOv5
|
88 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
89 |
+
|
90 |
+
# Use smaller inference size for speed
|
91 |
+
results = model(img, size=384) # Reduced from 640 to 384
|
92 |
+
|
93 |
+
detections = results.xyxy[0].cpu().numpy()
|
94 |
+
|
95 |
+
# Draw bounding boxes
|
96 |
+
for *xyxy, conf, cls in detections:
|
97 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
98 |
+
class_id = int(cls)
|
99 |
+
color = colors[class_id].tolist()
|
100 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
|
101 |
+
label = f"{model.names[class_id]} {conf:.2f}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
# Black text
|
104 |
+
cv2.putText(frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX,
|
105 |
+
0.7, (0, 0, 0), 2, cv2.LINE_AA)
|
106 |
|
107 |
+
# Update frame count for FPS calculation
|
108 |
+
frame_count += 1
|
109 |
+
|
110 |
+
# Calculate and display FPS every 10 frames
|
111 |
+
if frame_count % 10 == 0:
|
112 |
+
elapsed_time = time.time() - start_time
|
113 |
+
fps_calc = frame_count / elapsed_time if elapsed_time > 0 else 0
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
# Add FPS counter with black text
|
116 |
+
cv2.putText(frame, f"FPS: {fps_calc:.2f}", (20, 40),
|
117 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
|
118 |
+
|
119 |
+
out.write(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
cap.release()
|
122 |
+
out.release()
|
|
|
123 |
|
124 |
return output_path
|
125 |
|