Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,8 @@ import time
|
|
6 |
import os
|
7 |
from pathlib import Path
|
8 |
from PIL import Image
|
|
|
|
|
9 |
|
10 |
# Create cache directory for models
|
11 |
os.makedirs("models", exist_ok=True)
|
@@ -24,12 +26,13 @@ else:
|
|
24 |
torch.save(model.state_dict(), model_path)
|
25 |
|
26 |
# Optimize model for speed
|
27 |
-
model.conf = 0.
|
28 |
-
model.iou = 0.
|
29 |
-
model.classes = None
|
|
|
30 |
|
31 |
if device.type == "cuda":
|
32 |
-
model.half()
|
33 |
else:
|
34 |
torch.set_num_threads(os.cpu_count())
|
35 |
|
@@ -39,6 +42,27 @@ model.eval()
|
|
39 |
np.random.seed(42)
|
40 |
colors = np.random.randint(0, 255, size=(len(model.names), 3), dtype=np.uint8)
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def process_video(video_path):
|
43 |
# Check if video_path is None or empty
|
44 |
if video_path is None or video_path == "":
|
@@ -57,52 +81,131 @@ def process_video(video_path):
|
|
57 |
frame_height = int(cap.get(4))
|
58 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
59 |
|
60 |
-
|
|
|
61 |
output_path = "output_video.mp4"
|
62 |
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
total_frames = 0
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
return output_path
|
102 |
|
103 |
def process_image(image):
|
|
|
|
|
|
|
104 |
img = np.array(image)
|
105 |
-
|
|
|
|
|
106 |
|
107 |
detections = results.pred[0].cpu().numpy()
|
108 |
|
@@ -110,9 +213,10 @@ def process_image(image):
|
|
110 |
x1, y1, x2, y2 = map(int, xyxy)
|
111 |
class_id = int(cls)
|
112 |
color = colors[class_id].tolist()
|
113 |
-
cv2.rectangle(img, (x1, y1), (x2, y2), color,
|
114 |
label = f"{model.names[class_id]} {conf:.2f}"
|
115 |
-
|
|
|
116 |
|
117 |
return Image.fromarray(img)
|
118 |
|
@@ -236,4 +340,5 @@ with gr.Blocks(css=css, title="Video & Image Object Detection by YOLOv5") as dem
|
|
236 |
This application enables seamless object detection using the YOLOv5 model, allowing users to analyze images and videos with high accuracy and efficiency.
|
237 |
""", elem_classes="footer")
|
238 |
|
239 |
-
|
|
|
|
6 |
import os
|
7 |
from pathlib import Path
|
8 |
from PIL import Image
|
9 |
+
from threading import Thread
|
10 |
+
from queue import Queue
|
11 |
|
12 |
# Create cache directory for models
|
13 |
os.makedirs("models", exist_ok=True)
|
|
|
26 |
torch.save(model.state_dict(), model_path)
|
27 |
|
28 |
# Optimize model for speed
|
29 |
+
model.conf = 0.25 # Slightly lower confidence threshold
|
30 |
+
model.iou = 0.45 # Better IoU threshold
|
31 |
+
model.classes = None
|
32 |
+
model.max_det = 100 # Limit maximum detections
|
33 |
|
34 |
if device.type == "cuda":
|
35 |
+
model.half() # Use FP16 precision
|
36 |
else:
|
37 |
torch.set_num_threads(os.cpu_count())
|
38 |
|
|
|
42 |
np.random.seed(42)
|
43 |
colors = np.random.randint(0, 255, size=(len(model.names), 3), dtype=np.uint8)
|
44 |
|
45 |
+
# Async video processing
|
46 |
+
def process_frame(model, frame_queue, result_queue):
|
47 |
+
while True:
|
48 |
+
if frame_queue.empty():
|
49 |
+
time.sleep(0.001)
|
50 |
+
continue
|
51 |
+
|
52 |
+
frame_data = frame_queue.get()
|
53 |
+
if frame_data is None: # Signal to stop
|
54 |
+
result_queue.put(None)
|
55 |
+
break
|
56 |
+
|
57 |
+
frame, frame_index = frame_data
|
58 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
59 |
+
|
60 |
+
# Use a smaller inference size for speed
|
61 |
+
results = model(img, size=384) # Reduced from 640 to 384
|
62 |
+
|
63 |
+
detections = results.xyxy[0].cpu().numpy()
|
64 |
+
result_queue.put((frame, detections, frame_index))
|
65 |
+
|
66 |
def process_video(video_path):
|
67 |
# Check if video_path is None or empty
|
68 |
if video_path is None or video_path == "":
|
|
|
81 |
frame_height = int(cap.get(4))
|
82 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
83 |
|
84 |
+
# Used h264 codec for better performance
|
85 |
+
fourcc = cv2.VideoWriter_fourcc(*'avc1')
|
86 |
output_path = "output_video.mp4"
|
87 |
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
88 |
|
89 |
+
# Created queues for async processing
|
90 |
+
frame_queue = Queue(maxsize=10)
|
91 |
+
result_queue = Queue()
|
92 |
+
|
93 |
+
# Start processing thread
|
94 |
+
processing_thread = Thread(target=process_frame, args=(model, frame_queue, result_queue))
|
95 |
+
processing_thread.daemon = True
|
96 |
+
processing_thread.start()
|
97 |
+
|
98 |
total_frames = 0
|
99 |
+
start_time = time.time()
|
100 |
+
processing_started = False
|
101 |
+
frames_buffer = {}
|
102 |
+
next_frame_to_write = 0
|
103 |
+
|
104 |
+
try:
|
105 |
+
while cap.isOpened():
|
106 |
+
ret, frame = cap.read()
|
107 |
+
if not ret:
|
108 |
+
break
|
109 |
+
|
110 |
+
if not processing_started:
|
111 |
+
processing_started = True
|
112 |
+
start_time = time.time()
|
113 |
+
|
114 |
+
frame_queue.put((frame, total_frames))
|
115 |
+
total_frames += 1
|
116 |
+
|
117 |
+
# Process results if available
|
118 |
+
while not result_queue.empty():
|
119 |
+
result = result_queue.get()
|
120 |
+
if result is None:
|
121 |
+
break
|
122 |
+
|
123 |
+
processed_frame, detections, frame_idx = result
|
124 |
+
frames_buffer[frame_idx] = (processed_frame, detections)
|
125 |
+
|
126 |
+
# Write frames in order
|
127 |
+
while next_frame_to_write in frames_buffer:
|
128 |
+
buffer_frame, buffer_detections = frames_buffer.pop(next_frame_to_write)
|
129 |
+
|
130 |
+
# Draw bounding boxes
|
131 |
+
for *xyxy, conf, cls in buffer_detections:
|
132 |
+
if conf < 0.35: # Additional filtering
|
133 |
+
continue
|
134 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
135 |
+
class_id = int(cls)
|
136 |
+
color = colors[class_id].tolist()
|
137 |
+
cv2.rectangle(buffer_frame, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
|
138 |
+
label = f"{model.names[class_id]} {conf:.2f}"
|
139 |
+
# Black text with white outline for better visibility
|
140 |
+
cv2.putText(buffer_frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX,
|
141 |
+
0.7, (0, 0, 0), 2, cv2.LINE_AA)
|
142 |
+
|
143 |
+
# Calculate elapsed time and FPS
|
144 |
+
elapsed = time.time() - start_time
|
145 |
+
current_fps = next_frame_to_write / elapsed if elapsed > 0 else 0
|
146 |
+
|
147 |
+
# Add FPS counter with black text
|
148 |
+
cv2.putText(buffer_frame, f"FPS: {current_fps:.2f}", (20, 40),
|
149 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
|
150 |
+
|
151 |
+
out.write(buffer_frame)
|
152 |
+
next_frame_to_write += 1
|
153 |
+
|
154 |
+
# Signal thread to finish and process remaining frames
|
155 |
+
frame_queue.put(None)
|
156 |
|
157 |
+
# Process remaining buffered frames
|
158 |
+
while True:
|
159 |
+
if result_queue.empty():
|
160 |
+
time.sleep(0.01)
|
161 |
+
continue
|
162 |
+
|
163 |
+
result = result_queue.get()
|
164 |
+
if result is None:
|
165 |
+
break
|
166 |
+
|
167 |
+
processed_frame, detections, frame_idx = result
|
168 |
+
frames_buffer[frame_idx] = (processed_frame, detections)
|
169 |
+
|
170 |
+
# Write remaining frames in order
|
171 |
+
while next_frame_to_write in frames_buffer:
|
172 |
+
buffer_frame, buffer_detections = frames_buffer.pop(next_frame_to_write)
|
173 |
+
|
174 |
+
# Draw bounding boxes
|
175 |
+
for *xyxy, conf, cls in buffer_detections:
|
176 |
+
if conf < 0.35:
|
177 |
+
continue
|
178 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
179 |
+
class_id = int(cls)
|
180 |
+
color = colors[class_id].tolist()
|
181 |
+
cv2.rectangle(buffer_frame, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
|
182 |
+
label = f"{model.names[class_id]} {conf:.2f}"
|
183 |
+
cv2.putText(buffer_frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX,
|
184 |
+
0.7, (0, 0, 0), 2, cv2.LINE_AA)
|
185 |
+
|
186 |
+
# Add FPS counter
|
187 |
+
elapsed = time.time() - start_time
|
188 |
+
current_fps = next_frame_to_write / elapsed if elapsed > 0 else 0
|
189 |
+
cv2.putText(buffer_frame, f"FPS: {current_fps:.2f}", (20, 40),
|
190 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA)
|
191 |
+
|
192 |
+
out.write(buffer_frame)
|
193 |
+
next_frame_to_write += 1
|
194 |
+
|
195 |
+
finally:
|
196 |
+
cap.release()
|
197 |
+
out.release()
|
198 |
|
199 |
return output_path
|
200 |
|
201 |
def process_image(image):
|
202 |
+
if image is None:
|
203 |
+
return None
|
204 |
+
|
205 |
img = np.array(image)
|
206 |
+
|
207 |
+
# Process with smaller size for speed
|
208 |
+
results = model(img, size=512)
|
209 |
|
210 |
detections = results.pred[0].cpu().numpy()
|
211 |
|
|
|
213 |
x1, y1, x2, y2 = map(int, xyxy)
|
214 |
class_id = int(cls)
|
215 |
color = colors[class_id].tolist()
|
216 |
+
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
|
217 |
label = f"{model.names[class_id]} {conf:.2f}"
|
218 |
+
# Black text
|
219 |
+
cv2.putText(img, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2, cv2.LINE_AA)
|
220 |
|
221 |
return Image.fromarray(img)
|
222 |
|
|
|
340 |
This application enables seamless object detection using the YOLOv5 model, allowing users to analyze images and videos with high accuracy and efficiency.
|
341 |
""", elem_classes="footer")
|
342 |
|
343 |
+
if __name__ == "__main__":
|
344 |
+
demo.launch()
|