Aumkeshchy2003 commited on
Commit
6cfc8c8
·
verified ·
1 Parent(s): fa9a701

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -49
app.py CHANGED
@@ -12,91 +12,67 @@ os.makedirs("models", exist_ok=True)
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
  print(f"Using device: {device}")
14
 
15
- # Use smaller YOLOv5n model instead of x-large
16
  model_path = Path("models/yolov5n.pt")
17
  if not model_path.exists():
18
- print("Downloading and caching YOLOv5n...")
19
  torch.hub.download_url_to_file("https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt", "models/yolov5n.pt")
20
 
21
- # Optimized model loading
22
- model = torch.hub.load("ultralytics/yolov5", "custom", path=str(model_path), autoshape=False).to(device)
23
 
24
  # Model optimizations
25
- model.conf = 0.5 # Slightly lower confidence threshold
26
- model.iou = 0.45 # Lower IoU threshold for faster NMS
27
- model.classes = None # Detect all classes
28
-
29
- # Precision optimizations
30
  if device.type == "cuda":
31
- model.half() # FP16 inference
32
- torch.backends.cudnn.benchmark = True # Better CUDA performance
33
  else:
34
  model.float()
35
- torch.set_num_threads(2) # Limit CPU threads for better resource management
36
 
37
  model.eval()
38
 
39
- # Simplified color generation
40
- colors = np.random.rand(len(model.names), 3) * 255
41
-
42
- total_time = 0
43
- frame_count = 0
44
 
45
  def detect_objects(image):
46
- global total_time, frame_count
47
-
48
  if image is None:
49
  return None
50
 
51
  start = time.perf_counter()
52
 
53
- # Reduce input size and use optimized preprocessing
54
- input_size = 320 # Reduced from 640
55
  im = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
56
- im = cv2.resize(im, (input_size, input_size))
 
 
 
57
 
 
58
  with torch.no_grad():
59
- if device.type == "cuda":
60
- im = torch.from_numpy(im).to(device).half().permute(2, 0, 1).unsqueeze(0) / 255
61
- else:
62
- im = torch.from_numpy(im).to(device).float().permute(2, 0, 1).unsqueeze(0) / 255
63
-
64
- pred = model(im, augment=False)[0]
65
 
66
- # Faster post-processing
67
  pred = pred.float() if device.type == "cpu" else pred.half()
68
- pred = non_max_suppression(pred, model.conf, model.iou, agnostic=False)[0]
69
 
70
- # Optimized visualization
71
  output = image.copy()
72
- if pred is not None and len(pred):
73
- pred[:, :4] = scale_coords(im.shape[2:], pred[:, :4], output.shape).round()
74
  for *xyxy, conf, cls in pred:
75
  x1, y1, x2, y2 = map(int, xyxy)
76
  cv2.rectangle(output, (x1, y1), (x2, y2), colors[int(cls)].tolist(), 2)
77
 
78
- # FPS calculation
79
- dt = time.perf_counter() - start
80
- total_time += dt
81
- frame_count += 1
82
- fps = 1 / dt
83
- avg_fps = frame_count / total_time
84
-
85
- # Simplified FPS display
86
  cv2.putText(output, f"FPS: {fps:.1f}", (10, 30),
87
  cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
88
 
89
  return output
90
 
91
- # Use smaller example images
92
- example_images = ["pexels-hikaique-109919.jpg", "spring_street_after.jpg"]
93
-
94
- with gr.Blocks(title="Optimized YOLOv5") as demo:
95
- gr.Markdown("# Real-Time YOLOv5 Object Detection")
96
  with gr.Row():
97
- input_img = gr.Image(label="Input", source="webcam" if os.getenv('SPACE_ID') else None)
98
  output_img = gr.Image(label="Output")
99
- gr.Examples(examples=example_images, inputs=input_img, outputs=output_img, fn=detect_objects)
100
- input_img.change(fn=detect_objects, inputs=input_img, outputs=output_img)
101
 
102
  demo.launch()
 
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
  print(f"Using device: {device}")
14
 
15
+ # Load YOLOv5n model
16
  model_path = Path("models/yolov5n.pt")
17
  if not model_path.exists():
 
18
  torch.hub.download_url_to_file("https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n.pt", "models/yolov5n.pt")
19
 
20
+ model = torch.hub.load("ultralytics/yolov5", "custom", path=str(model_path)).to(device)
 
21
 
22
  # Model optimizations
23
+ model.conf = 0.5
24
+ model.iou = 0.45
 
 
 
25
  if device.type == "cuda":
26
+ model.half()
 
27
  else:
28
  model.float()
29
+ torch.set_num_threads(2)
30
 
31
  model.eval()
32
 
33
+ colors = np.random.rand(80, 3) * 255 # COCO classes
 
 
 
 
34
 
35
  def detect_objects(image):
 
 
36
  if image is None:
37
  return None
38
 
39
  start = time.perf_counter()
40
 
41
+ # Preprocess
 
42
  im = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
43
+ im = cv2.resize(im, (320, 320))
44
+ tensor = torch.from_numpy(im).to(device)
45
+ tensor = tensor.half() if device.type == "cuda" else tensor.float()
46
+ tensor = tensor.permute(2, 0, 1).unsqueeze(0) / 255
47
 
48
+ # Inference
49
  with torch.no_grad():
50
+ pred = model(tensor)[0]
 
 
 
 
 
51
 
52
+ # Post-process
53
  pred = pred.float() if device.type == "cpu" else pred.half()
54
+ pred = non_max_suppression(pred, model.conf, model.iou)[0]
55
 
56
+ # Visualization
57
  output = image.copy()
58
+ if pred is not None:
59
+ pred[:, :4] = scale_coords(tensor.shape[2:], pred[:, :4], image.shape).round()
60
  for *xyxy, conf, cls in pred:
61
  x1, y1, x2, y2 = map(int, xyxy)
62
  cv2.rectangle(output, (x1, y1), (x2, y2), colors[int(cls)].tolist(), 2)
63
 
64
+ # FPS counter
65
+ fps = 1 / (time.perf_counter() - start)
 
 
 
 
 
 
66
  cv2.putText(output, f"FPS: {fps:.1f}", (10, 30),
67
  cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
68
 
69
  return output
70
 
71
+ with gr.Blocks() as demo:
72
+ gr.Markdown("# Real-Time Object Detection")
 
 
 
73
  with gr.Row():
74
+ input_img = gr.Image(label="Input", streaming=True) # Modified webcam handling
75
  output_img = gr.Image(label="Output")
76
+ input_img.change(detect_objects, input_img, output_img)
 
77
 
78
  demo.launch()