Aumkeshchy2003's picture
Update app.py
fcf4983 verified
raw
history blame
2.31 kB
import torch
import numpy as np
import gradio as gr
import cv2
import time
# Check device availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load smaller YOLOv5 model
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
# Optimization configurations
model.conf = 0.3 # Confidence threshold
model.iou = 0.3 # NMS IoU threshold
if device.type == "cuda":
model.half().to(device) # Use FP16 for performance boost
model.eval() # Set model to evaluation mode
# Assign fixed colors to each class for bounding boxes
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
def detect_objects(image):
start_time = time.time()
# Convert BGR to RGB (if needed, Gradio might already provide RGB)
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Perform inference
with torch.no_grad():
results = model(image, size=640) # Fixed inference size
# Process results directly on numpy array
output_image = image.copy()
# Extract detections
detections = results.pred[0].cpu().numpy()
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
# Draw bounding box
color = colors[class_id].tolist()
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2)
# Create label
label = f"{model.names[class_id]} {conf:.2f}"
# Draw label background
(w, h), * = cv2.getTextSize(label, cv2.FONT*HERSHEY_SIMPLEX, 0.5, 1)
cv2.rectangle(output_image, (x1, y1 - 20), (x1 + w, y1), color, -1)
# Draw label text
cv2.putText(output_image, label, (x1, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
# Calculate FPS
fps = 1 / (time.time() - start_time)
print(f"FPS: {fps:.2f}")
return output_image
# Gradio interface
iface = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=gr.Image(type="numpy", label="Detected Objects"),
title="Optimized Object Detection with YOLOv5",
description="Faster detection using YOLOv5s with FP16 and optimized processing",
allow_flagging="never",
examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"],
)
iface.launch()