Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,106 +3,64 @@ import numpy as np
|
|
3 |
import gradio as gr
|
4 |
import cv2
|
5 |
import time
|
6 |
-
|
7 |
-
from pathlib import Path
|
8 |
-
|
9 |
-
# Create cache directory for models
|
10 |
-
os.makedirs("models", exist_ok=True)
|
11 |
-
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
-
|
14 |
-
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
print(f"Loading model from cache: {model_path}")
|
19 |
-
model = torch.hub.load("ultralytics/yolov5", "custom", path=str(model_path), source="local").to(device)
|
20 |
-
else:
|
21 |
-
print("Downloading YOLOv5n model and caching...")
|
22 |
-
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
|
23 |
-
torch.save(model.state_dict(), model_path)
|
24 |
-
|
25 |
-
# Configure model
|
26 |
-
model.conf = 0.5
|
27 |
-
model.iou = 0.5
|
28 |
-
model.classes = None
|
29 |
if device.type == "cuda":
|
30 |
-
model.half()
|
31 |
-
|
32 |
-
|
33 |
-
model.eval()
|
34 |
-
|
35 |
-
# Generate colors for bounding boxes
|
36 |
-
np.random.seed(42)
|
37 |
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
|
38 |
-
|
39 |
def detect_objects(image):
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
output_image = image.copy()
|
44 |
-
|
|
|
45 |
detections = results.pred[0].cpu().numpy()
|
46 |
-
|
47 |
for *xyxy, conf, cls in detections:
|
48 |
x1, y1, x2, y2 = map(int, xyxy)
|
49 |
class_id = int(cls)
|
|
|
|
|
50 |
color = colors[class_id].tolist()
|
51 |
-
cv2.rectangle(output_image, (x1, y1), (x2, y2), color,
|
52 |
-
label = f"{model.names[class_id]} {conf:.2f}"
|
53 |
-
cv2.putText(output_image, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
|
54 |
-
|
55 |
-
return output_image
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
if not cap.isOpened():
|
60 |
-
return "Error: Could not open video file."
|
61 |
-
|
62 |
-
frame_width = int(cap.get(3))
|
63 |
-
frame_height = int(cap.get(4))
|
64 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
65 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
66 |
-
output_path = "output_video.mp4"
|
67 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
68 |
-
|
69 |
-
while cap.isOpened():
|
70 |
-
ret, frame = cap.read()
|
71 |
-
if not ret:
|
72 |
-
break
|
73 |
-
|
74 |
-
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
75 |
-
results = model(img, size=640)
|
76 |
-
detections = results.pred[0].cpu().numpy()
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
color = colors[class_id].tolist()
|
82 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
|
83 |
-
label = f"{model.names[class_id]} {conf:.2f}"
|
84 |
-
cv2.putText(frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
|
85 |
-
|
86 |
-
out.write(frame)
|
87 |
-
|
88 |
-
cap.release()
|
89 |
-
out.release()
|
90 |
-
return output_path
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
3 |
import gradio as gr
|
4 |
import cv2
|
5 |
import time
|
6 |
+
# Check device availability
|
|
|
|
|
|
|
|
|
|
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
# Load smaller YOLOv5 model
|
9 |
+
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
|
10 |
+
# Optimization configurations
|
11 |
+
model.conf = 0.3 # Confidence threshold
|
12 |
+
model.iou = 0.3 # NMS IoU threshold
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
if device.type == "cuda":
|
14 |
+
model.half().to(device) # Use FP16 for performance boost
|
15 |
+
model.eval() # Set model to evaluation mode
|
16 |
+
# Assign fixed colors to each class for bounding boxes
|
|
|
|
|
|
|
|
|
17 |
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
|
|
|
18 |
def detect_objects(image):
|
19 |
+
start_time = time.time()
|
20 |
+
|
21 |
+
# Convert BGR to RGB (if needed, Gradio might already provide RGB)
|
22 |
+
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
23 |
+
|
24 |
+
# Perform inference
|
25 |
+
with torch.no_grad():
|
26 |
+
results = model(image, size=640) # Fixed inference size
|
27 |
+
|
28 |
+
# Process results directly on numpy array
|
29 |
output_image = image.copy()
|
30 |
+
|
31 |
+
# Extract detections
|
32 |
detections = results.pred[0].cpu().numpy()
|
33 |
+
|
34 |
for *xyxy, conf, cls in detections:
|
35 |
x1, y1, x2, y2 = map(int, xyxy)
|
36 |
class_id = int(cls)
|
37 |
+
|
38 |
+
# Draw bounding box
|
39 |
color = colors[class_id].tolist()
|
40 |
+
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2)
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Create label
|
43 |
+
label = f"{model.names[class_id]} {conf:.2f}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# Draw label background
|
46 |
+
(w, h), * = cv2.getTextSize(label, cv2.FONT*HERSHEY_SIMPLEX, 0.5, 1)
|
47 |
+
cv2.rectangle(output_image, (x1, y1 - 20), (x1 + w, y1), color, -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Draw label text
|
50 |
+
cv2.putText(output_image, label, (x1, y1 - 5),
|
51 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
52 |
+
# Calculate FPS
|
53 |
+
fps = 1 / (time.time() - start_time)
|
54 |
+
print(f"FPS: {fps:.2f}")
|
55 |
+
return output_image
|
56 |
+
# Gradio interface
|
57 |
+
iface = gr.Interface(
|
58 |
+
fn=detect_objects,
|
59 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
60 |
+
outputs=gr.Image(type="numpy", label="Detected Objects"),
|
61 |
+
title="Optimized Object Detection with YOLOv5",
|
62 |
+
description="Faster detection using YOLOv5s with FP16 and optimized processing",
|
63 |
+
allow_flagging="never",
|
64 |
+
examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"],
|
65 |
+
)
|
66 |
+
iface.launch()
|