Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from huggingface_hub import snapshot_download | |
from snac import SNAC | |
import time # Import the time module | |
from dotenv import load_dotenv | |
from optimum.bettertransformer import BetterTransformer | |
load_dotenv() | |
# Check if CUDA is available, otherwise use CPU | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# 1. Load SNAC Model (for audio decoding) | |
print("Loading SNAC model...") | |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz") | |
snac_model = snac_model.to(device) | |
snac_model.eval() # Set SNAC to evaluation mode | |
# 2. Load Orpheus Language Model (for text-to-token generation) | |
model_name = "canopylabs/orpheus-3b-0.1-ft" | |
# Download only necessary files (config and safetensors) | |
print("Downloading Orpheus model files...") | |
snapshot_download( | |
repo_id=model_name, | |
allow_patterns=[ | |
"config.json", | |
".safetensors", | |
"model.safetensors.index.json", | |
], | |
ignore_patterns=[ | |
"optimizer.pt", | |
"pytorch_model.bin", | |
"training_args.bin", | |
"scheduler.pt", | |
"tokenizer.json", | |
"tokenizer_config.json", | |
"special_tokens_map.json", | |
"vocab.json", | |
"merges.txt", | |
"tokenizer." | |
] | |
) | |
print("Loading Orpheus model...") | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True) | |
# --- Optimization 1: Convert to BetterTransformer --- | |
try: | |
model = BetterTransformer.transform(model) | |
print("Model converted to BetterTransformer for faster inference.") | |
except Exception as e: | |
print(f"BetterTransformer conversion failed: {e}. Proceeding without it.") | |
model.to(device) | |
model.eval() # Set the Orpheus model to evaluation mode | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
print(f"Orpheus model loaded to {device}") | |
# --- Function Definitions --- | |
def process_prompt(prompt, voice, tokenizer, device): | |
"""Processes the text prompt and converts it to input IDs.""" | |
prompt = f"{voice}: {prompt}" | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human | |
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human | |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH | |
# No padding needed for single input | |
attention_mask = torch.ones_like(modified_input_ids) | |
return modified_input_ids.to(device), attention_mask.to(device) | |
def parse_output(generated_ids): | |
"""Parses the generated token IDs to extract the audio codes.""" | |
token_to_find = 128257 # SOT token | |
token_to_remove = 128258 # EOT token | |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True) | |
if len(token_indices[1]) > 0: | |
last_occurrence_idx = token_indices[1][-1].item() | |
cropped_tensor = generated_ids[:, last_occurrence_idx + 1:] | |
else: | |
cropped_tensor = generated_ids | |
processed_rows = [] | |
for row in cropped_tensor: | |
masked_row = row[row != token_to_remove] | |
processed_rows.append(masked_row) | |
code_lists = [] | |
for row in processed_rows: | |
row_length = row.size(0) | |
new_length = (row_length // 7) * 7 # Ensure divisibility by 7 | |
trimmed_row = row[:new_length] | |
trimmed_row = [t - 128266 for t in trimmed_row] # Adjust code values | |
code_lists.append(trimmed_row) | |
return code_lists[0] # Return codes for the first (and only) sequence | |
def redistribute_codes(code_list, snac_model): | |
"""Redistributes the audio codes into the format required by SNAC.""" | |
device = next(snac_model.parameters()).device # Get the device of SNAC model | |
layer_1 = [] | |
layer_2 = [] | |
layer_3 = [] | |
for i in range(len(code_list) // 7): # Corrected loop condition | |
layer_1.append(code_list[7*i]) | |
layer_2.append(code_list[7*i+1]-4096) | |
layer_3.append(code_list[7*i+2]-(2*4096)) | |
layer_3.append(code_list[7*i+3]-(3*4096)) | |
layer_2.append(code_list[7*i+4]-(4*4096)) | |
layer_3.append(code_list[7*i+5]-(5*4096)) | |
layer_3.append(code_list[7*i+6]-(6*4096)) | |
# Move tensors to the same device as the SNAC model | |
codes = [ | |
torch.tensor(layer_1, device=device).unsqueeze(0), | |
torch.tensor(layer_2, device=device).unsqueeze(0), | |
torch.tensor(layer_3, device=device).unsqueeze(0) | |
] | |
audio_hat = snac_model.decode(codes) | |
return audio_hat.detach().squeeze().cpu().numpy() # Return CPU numpy array | |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()): | |
"""Generates speech from the given text using Orpheus and SNAC.""" | |
if not text.strip(): | |
return None | |
try: | |
start_time = time.time() # Start timing | |
progress(0.1, "Processing text...") | |
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device) | |
process_time = time.time() - start_time | |
print(f"Text processing time: {process_time:.2f} seconds") | |
start_time = time.time() # Reset timer | |
progress(0.3, "Generating speech tokens...") | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
num_return_sequences=1, | |
eos_token_id=128258, | |
) | |
generation_time = time.time() - start_time | |
print(f"Token generation time: {generation_time:.2f} seconds") | |
start_time = time.time() # Reset timer | |
progress(0.6, "Processing speech tokens...") | |
code_list = parse_output(generated_ids) | |
parse_time = time.time() - start_time | |
print(f"Token parsing time: {parse_time:.2f} seconds") | |
start_time = time.time() # Reset timer | |
progress(0.8, "Converting to audio...") | |
audio_samples = redistribute_codes(code_list, snac_model) | |
audio_time = time.time() - start_time | |
print(f"Audio conversion time: {audio_time:.2f} seconds") | |
return (24000, audio_samples) # Return sample rate and audio | |
except Exception as e: | |
print(f"Error generating speech: {e}") | |
return None | |
# --- Gradio Interface Setup --- | |
examples = [ | |
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200], | |
["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200], | |
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, lets just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200] | |
] | |
VOICES = ["tara", "dan", "josh", "emma"] | |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo: | |
gr.Markdown(""" | |
# 🎵 Orpheus Text-to-Speech | |
Enter text below to convert to speech. | |
""") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
text_input = gr.Textbox( | |
label="Text to speak", | |
placeholder="Enter your text here...", | |
lines=5 | |
) | |
voice = gr.Dropdown( | |
choices=VOICES, | |
value="tara", | |
label="Voice" | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
temperature = gr.Slider( | |
minimum=0.1, maximum=1.5, value=0.6, step=0.05, | |
label="Temperature" | |
) | |
top_p = gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.95, step=0.05, | |
label="Top P" | |
) | |
repetition_penalty = gr.Slider( | |
minimum=1.0, maximum=2.0, value=1.1, step=0.05, | |
label="Repetition Penalty" | |
) | |
max_new_tokens = gr.Slider( | |
minimum=100, maximum=2000, value=1200, step=100, | |
label="Max Length" | |
) | |
with gr.Row(): | |
submit_btn = gr.Button("Generate Speech", variant="primary") | |
clear_btn = gr.Button("Clear") | |
with gr.Column(scale=2): | |
audio_output = gr.Audio(label="Generated Speech", type="numpy") | |
gr.Examples( | |
examples=examples, | |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens], | |
outputs=audio_output, | |
fn=generate_speech, | |
cache_examples=True, | |
) | |
submit_btn.click( | |
fn=generate_speech, | |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens], | |
outputs=audio_output | |
) | |
clear_btn.click( | |
fn=lambda: (None, None), | |
inputs=[], | |
outputs=[text_input, audio_output] | |
) | |
if __name__ == "__main__": | |
demo.queue().launch(share=False) |