Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,35 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
from huggingface_hub import snapshot_download
|
|
|
|
|
6 |
from dotenv import load_dotenv
|
|
|
7 |
|
8 |
-
# Load environment variables
|
9 |
load_dotenv()
|
10 |
|
11 |
-
# Set number of threads (adjust based on your CPU cores)
|
12 |
-
torch.set_num_threads(4)
|
13 |
|
14 |
-
#
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
-
|
17 |
-
|
18 |
-
# No-op decorator for CPU mode (if you had GPU-specific decorators)
|
19 |
-
def gpu_decorator(func):
|
20 |
-
return func
|
21 |
-
|
22 |
-
# Import SNAC after setting device
|
23 |
-
from snac import SNAC
|
24 |
|
|
|
25 |
print("Loading SNAC model...")
|
26 |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
27 |
snac_model = snac_model.to(device)
|
28 |
-
snac_model.eval() # Set SNAC to
|
29 |
|
|
|
30 |
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
31 |
|
32 |
-
# Download only necessary files
|
|
|
33 |
snapshot_download(
|
34 |
repo_id=model_name,
|
35 |
allow_patterns=[
|
36 |
"config.json",
|
37 |
-
"
|
38 |
"model.safetensors.index.json",
|
39 |
],
|
40 |
ignore_patterns=[
|
@@ -47,42 +42,50 @@ snapshot_download(
|
|
47 |
"special_tokens_map.json",
|
48 |
"vocab.json",
|
49 |
"merges.txt",
|
50 |
-
"tokenizer
|
51 |
]
|
52 |
)
|
53 |
|
54 |
print("Loading Orpheus model...")
|
55 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=
|
56 |
-
model.to(device)
|
57 |
-
model.eval() # Set the model to evaluation mode
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
print("torch.compile not supported:", e)
|
66 |
|
|
|
|
|
67 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
68 |
print(f"Orpheus model loaded to {device}")
|
69 |
|
|
|
|
|
|
|
70 |
def process_prompt(prompt, voice, tokenizer, device):
|
|
|
71 |
prompt = f"{voice}: {prompt}"
|
72 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
73 |
|
74 |
-
start_token = torch.tensor([[128259]], dtype=torch.int64)
|
75 |
-
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
|
76 |
|
77 |
-
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
|
|
|
|
78 |
attention_mask = torch.ones_like(modified_input_ids)
|
|
|
79 |
return modified_input_ids.to(device), attention_mask.to(device)
|
80 |
|
81 |
def parse_output(generated_ids):
|
82 |
-
|
83 |
-
|
|
|
84 |
|
85 |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
|
|
86 |
if len(token_indices[1]) > 0:
|
87 |
last_occurrence_idx = token_indices[1][-1].item()
|
88 |
cropped_tensor = generated_ids[:, last_occurrence_idx + 1:]
|
@@ -97,42 +100,57 @@ def parse_output(generated_ids):
|
|
97 |
code_lists = []
|
98 |
for row in processed_rows:
|
99 |
row_length = row.size(0)
|
100 |
-
new_length = (row_length // 7) * 7
|
101 |
trimmed_row = row[:new_length]
|
102 |
-
trimmed_row = [t - 128266 for t in trimmed_row]
|
103 |
code_lists.append(trimmed_row)
|
104 |
|
105 |
-
return code_lists[0]
|
|
|
106 |
|
107 |
def redistribute_codes(code_list, snac_model):
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
layer_3.append(code_list[7
|
|
|
|
|
|
|
|
|
118 |
|
|
|
119 |
codes = [
|
120 |
-
torch.tensor(layer_1, device=
|
121 |
-
torch.tensor(layer_2, device=
|
122 |
-
torch.tensor(layer_3, device=
|
123 |
]
|
|
|
124 |
audio_hat = snac_model.decode(codes)
|
125 |
-
return audio_hat.detach().squeeze().cpu().numpy()
|
|
|
126 |
|
127 |
-
@gpu_decorator
|
128 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
|
|
129 |
if not text.strip():
|
130 |
return None
|
|
|
131 |
try:
|
132 |
-
|
|
|
|
|
133 |
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
generated_ids = model.generate(
|
137 |
input_ids=input_ids,
|
138 |
attention_mask=attention_mask,
|
@@ -144,90 +162,82 @@ def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new
|
|
144 |
num_return_sequences=1,
|
145 |
eos_token_id=128258,
|
146 |
)
|
147 |
-
|
|
|
|
|
|
|
|
|
148 |
code_list = parse_output(generated_ids)
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
150 |
audio_samples = redistribute_codes(code_list, snac_model)
|
151 |
-
|
152 |
-
|
|
|
|
|
153 |
except Exception as e:
|
154 |
print(f"Error generating speech: {e}")
|
155 |
return None
|
156 |
|
157 |
-
def convert_model_to_onnx():
|
158 |
-
"""
|
159 |
-
Converts the Orpheus model to ONNX format using a dummy prompt.
|
160 |
-
The exported file will be saved as 'orpheus_model.onnx' in the working directory.
|
161 |
-
"""
|
162 |
-
dummy_prompt = "tara: Hello"
|
163 |
-
dummy_input = tokenizer(dummy_prompt, return_tensors="pt").input_ids.to(device)
|
164 |
-
file_path = "orpheus_model.onnx"
|
165 |
-
|
166 |
-
# Ensure the model is in evaluation mode and not compiled
|
167 |
-
model.eval()
|
168 |
-
|
169 |
-
# Reset Torch Dynamo to avoid FX-tracing issues during export.
|
170 |
-
if hasattr(torch, "_dynamo"):
|
171 |
-
try:
|
172 |
-
torch._dynamo.reset()
|
173 |
-
print("Torch Dynamo reset before ONNX export")
|
174 |
-
except Exception as e:
|
175 |
-
print(f"Warning: Torch Dynamo reset failed - {e}")
|
176 |
-
|
177 |
-
try:
|
178 |
-
torch.onnx.export(
|
179 |
-
model,
|
180 |
-
dummy_input,
|
181 |
-
file_path,
|
182 |
-
export_params=True,
|
183 |
-
opset_version=14,
|
184 |
-
input_names=["input_ids"],
|
185 |
-
output_names=["logits"],
|
186 |
-
dynamic_axes={
|
187 |
-
"input_ids": {0: "batch_size", 1: "sequence_length"},
|
188 |
-
"logits": {0: "batch_size", 1: "sequence_length"}
|
189 |
-
},
|
190 |
-
)
|
191 |
-
return f"Model converted to ONNX and saved as '{file_path}'."
|
192 |
-
except Exception as e:
|
193 |
-
return f"Error during ONNX conversion: {e}"
|
194 |
|
195 |
-
|
|
|
|
|
196 |
examples = [
|
197 |
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
|
198 |
["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
|
199 |
-
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well,
|
200 |
]
|
|
|
201 |
VOICES = ["tara", "dan", "josh", "emma"]
|
202 |
|
203 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
204 |
gr.Markdown("""
|
205 |
# 🎵 Orpheus Text-to-Speech
|
206 |
-
Enter text to
|
207 |
-
|
208 |
-
**Tips:**
|
209 |
-
- Include paralinguistic cues like `<chuckle>` or `<sigh>`.
|
210 |
-
- Longer text can produce more natural results.
|
211 |
""")
|
212 |
with gr.Row():
|
213 |
with gr.Column(scale=3):
|
214 |
-
text_input = gr.Textbox(
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
with gr.Accordion("Advanced Settings", open=False):
|
217 |
-
temperature = gr.Slider(
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
with gr.Row():
|
226 |
submit_btn = gr.Button("Generate Speech", variant="primary")
|
227 |
clear_btn = gr.Button("Clear")
|
|
|
228 |
with gr.Column(scale=2):
|
229 |
audio_output = gr.Audio(label="Generated Speech", type="numpy")
|
230 |
-
|
231 |
gr.Examples(
|
232 |
examples=examples,
|
233 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
@@ -235,22 +245,18 @@ with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
|
235 |
fn=generate_speech,
|
236 |
cache_examples=True,
|
237 |
)
|
238 |
-
|
239 |
submit_btn.click(
|
240 |
fn=generate_speech,
|
241 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
242 |
outputs=audio_output
|
243 |
)
|
|
|
244 |
clear_btn.click(
|
245 |
fn=lambda: (None, None),
|
246 |
inputs=[],
|
247 |
outputs=[text_input, audio_output]
|
248 |
)
|
249 |
-
|
250 |
-
gr.Markdown("## ONNX Conversion")
|
251 |
-
onnx_btn = gr.Button("Convert Model to ONNX")
|
252 |
-
onnx_output = gr.Textbox(label="Conversion Output")
|
253 |
-
onnx_btn.click(fn=convert_model_to_onnx, inputs=[], outputs=onnx_output)
|
254 |
|
255 |
if __name__ == "__main__":
|
256 |
-
demo.queue().launch(share=False
|
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from huggingface_hub import snapshot_download
|
5 |
+
from snac import SNAC
|
6 |
+
import time # Import the time module
|
7 |
from dotenv import load_dotenv
|
8 |
+
from optimum.bettertransformer import BetterTransformer
|
9 |
|
|
|
10 |
load_dotenv()
|
11 |
|
|
|
|
|
12 |
|
13 |
+
# Check if CUDA is available, otherwise use CPU
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
print(f"Using device: {device}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# 1. Load SNAC Model (for audio decoding)
|
18 |
print("Loading SNAC model...")
|
19 |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
20 |
snac_model = snac_model.to(device)
|
21 |
+
snac_model.eval() # Set SNAC to evaluation mode
|
22 |
|
23 |
+
# 2. Load Orpheus Language Model (for text-to-token generation)
|
24 |
model_name = "canopylabs/orpheus-3b-0.1-ft"
|
25 |
|
26 |
+
# Download only necessary files (config and safetensors)
|
27 |
+
print("Downloading Orpheus model files...")
|
28 |
snapshot_download(
|
29 |
repo_id=model_name,
|
30 |
allow_patterns=[
|
31 |
"config.json",
|
32 |
+
".safetensors",
|
33 |
"model.safetensors.index.json",
|
34 |
],
|
35 |
ignore_patterns=[
|
|
|
42 |
"special_tokens_map.json",
|
43 |
"vocab.json",
|
44 |
"merges.txt",
|
45 |
+
"tokenizer."
|
46 |
]
|
47 |
)
|
48 |
|
49 |
print("Loading Orpheus model...")
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
|
|
|
|
|
51 |
|
52 |
+
# --- Optimization 1: Convert to BetterTransformer ---
|
53 |
+
try:
|
54 |
+
model = BetterTransformer.transform(model)
|
55 |
+
print("Model converted to BetterTransformer for faster inference.")
|
56 |
+
except Exception as e:
|
57 |
+
print(f"BetterTransformer conversion failed: {e}. Proceeding without it.")
|
|
|
58 |
|
59 |
+
model.to(device)
|
60 |
+
model.eval() # Set the Orpheus model to evaluation mode
|
61 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
62 |
print(f"Orpheus model loaded to {device}")
|
63 |
|
64 |
+
|
65 |
+
# --- Function Definitions ---
|
66 |
+
|
67 |
def process_prompt(prompt, voice, tokenizer, device):
|
68 |
+
"""Processes the text prompt and converts it to input IDs."""
|
69 |
prompt = f"{voice}: {prompt}"
|
70 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
71 |
|
72 |
+
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
73 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
74 |
|
75 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
|
76 |
+
|
77 |
+
# No padding needed for single input
|
78 |
attention_mask = torch.ones_like(modified_input_ids)
|
79 |
+
|
80 |
return modified_input_ids.to(device), attention_mask.to(device)
|
81 |
|
82 |
def parse_output(generated_ids):
|
83 |
+
"""Parses the generated token IDs to extract the audio codes."""
|
84 |
+
token_to_find = 128257 # SOT token
|
85 |
+
token_to_remove = 128258 # EOT token
|
86 |
|
87 |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
88 |
+
|
89 |
if len(token_indices[1]) > 0:
|
90 |
last_occurrence_idx = token_indices[1][-1].item()
|
91 |
cropped_tensor = generated_ids[:, last_occurrence_idx + 1:]
|
|
|
100 |
code_lists = []
|
101 |
for row in processed_rows:
|
102 |
row_length = row.size(0)
|
103 |
+
new_length = (row_length // 7) * 7 # Ensure divisibility by 7
|
104 |
trimmed_row = row[:new_length]
|
105 |
+
trimmed_row = [t - 128266 for t in trimmed_row] # Adjust code values
|
106 |
code_lists.append(trimmed_row)
|
107 |
|
108 |
+
return code_lists[0] # Return codes for the first (and only) sequence
|
109 |
+
|
110 |
|
111 |
def redistribute_codes(code_list, snac_model):
|
112 |
+
"""Redistributes the audio codes into the format required by SNAC."""
|
113 |
+
device = next(snac_model.parameters()).device # Get the device of SNAC model
|
114 |
+
|
115 |
+
layer_1 = []
|
116 |
+
layer_2 = []
|
117 |
+
layer_3 = []
|
118 |
+
for i in range(len(code_list) // 7): # Corrected loop condition
|
119 |
+
layer_1.append(code_list[7*i])
|
120 |
+
layer_2.append(code_list[7*i+1]-4096)
|
121 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
122 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
123 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
124 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
125 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
126 |
|
127 |
+
# Move tensors to the same device as the SNAC model
|
128 |
codes = [
|
129 |
+
torch.tensor(layer_1, device=device).unsqueeze(0),
|
130 |
+
torch.tensor(layer_2, device=device).unsqueeze(0),
|
131 |
+
torch.tensor(layer_3, device=device).unsqueeze(0)
|
132 |
]
|
133 |
+
|
134 |
audio_hat = snac_model.decode(codes)
|
135 |
+
return audio_hat.detach().squeeze().cpu().numpy() # Return CPU numpy array
|
136 |
+
|
137 |
|
|
|
138 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
139 |
+
"""Generates speech from the given text using Orpheus and SNAC."""
|
140 |
if not text.strip():
|
141 |
return None
|
142 |
+
|
143 |
try:
|
144 |
+
start_time = time.time() # Start timing
|
145 |
+
|
146 |
+
progress(0.1, "Processing text...")
|
147 |
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
148 |
+
process_time = time.time() - start_time
|
149 |
+
print(f"Text processing time: {process_time:.2f} seconds")
|
150 |
+
|
151 |
+
start_time = time.time() # Reset timer
|
152 |
+
progress(0.3, "Generating speech tokens...")
|
153 |
+
with torch.no_grad():
|
154 |
generated_ids = model.generate(
|
155 |
input_ids=input_ids,
|
156 |
attention_mask=attention_mask,
|
|
|
162 |
num_return_sequences=1,
|
163 |
eos_token_id=128258,
|
164 |
)
|
165 |
+
generation_time = time.time() - start_time
|
166 |
+
print(f"Token generation time: {generation_time:.2f} seconds")
|
167 |
+
|
168 |
+
start_time = time.time() # Reset timer
|
169 |
+
progress(0.6, "Processing speech tokens...")
|
170 |
code_list = parse_output(generated_ids)
|
171 |
+
parse_time = time.time() - start_time
|
172 |
+
print(f"Token parsing time: {parse_time:.2f} seconds")
|
173 |
+
|
174 |
+
|
175 |
+
start_time = time.time() # Reset timer
|
176 |
+
progress(0.8, "Converting to audio...")
|
177 |
audio_samples = redistribute_codes(code_list, snac_model)
|
178 |
+
audio_time = time.time() - start_time
|
179 |
+
print(f"Audio conversion time: {audio_time:.2f} seconds")
|
180 |
+
|
181 |
+
return (24000, audio_samples) # Return sample rate and audio
|
182 |
except Exception as e:
|
183 |
print(f"Error generating speech: {e}")
|
184 |
return None
|
185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
|
188 |
+
# --- Gradio Interface Setup ---
|
189 |
+
|
190 |
examples = [
|
191 |
["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
|
192 |
["I've also been taught to understand and produce paralinguistic things like sighing, or chuckling, or yawning!", "dan", 0.7, 0.95, 1.1, 1200],
|
193 |
+
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, lets just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200]
|
194 |
]
|
195 |
+
|
196 |
VOICES = ["tara", "dan", "josh", "emma"]
|
197 |
|
198 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
199 |
gr.Markdown("""
|
200 |
# 🎵 Orpheus Text-to-Speech
|
201 |
+
Enter text below to convert to speech.
|
|
|
|
|
|
|
|
|
202 |
""")
|
203 |
with gr.Row():
|
204 |
with gr.Column(scale=3):
|
205 |
+
text_input = gr.Textbox(
|
206 |
+
label="Text to speak",
|
207 |
+
placeholder="Enter your text here...",
|
208 |
+
lines=5
|
209 |
+
)
|
210 |
+
voice = gr.Dropdown(
|
211 |
+
choices=VOICES,
|
212 |
+
value="tara",
|
213 |
+
label="Voice"
|
214 |
+
)
|
215 |
+
|
216 |
with gr.Accordion("Advanced Settings", open=False):
|
217 |
+
temperature = gr.Slider(
|
218 |
+
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
219 |
+
label="Temperature"
|
220 |
+
)
|
221 |
+
top_p = gr.Slider(
|
222 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
223 |
+
label="Top P"
|
224 |
+
)
|
225 |
+
repetition_penalty = gr.Slider(
|
226 |
+
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
227 |
+
label="Repetition Penalty"
|
228 |
+
)
|
229 |
+
max_new_tokens = gr.Slider(
|
230 |
+
minimum=100, maximum=2000, value=1200, step=100,
|
231 |
+
label="Max Length"
|
232 |
+
)
|
233 |
+
|
234 |
with gr.Row():
|
235 |
submit_btn = gr.Button("Generate Speech", variant="primary")
|
236 |
clear_btn = gr.Button("Clear")
|
237 |
+
|
238 |
with gr.Column(scale=2):
|
239 |
audio_output = gr.Audio(label="Generated Speech", type="numpy")
|
240 |
+
|
241 |
gr.Examples(
|
242 |
examples=examples,
|
243 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
|
|
245 |
fn=generate_speech,
|
246 |
cache_examples=True,
|
247 |
)
|
248 |
+
|
249 |
submit_btn.click(
|
250 |
fn=generate_speech,
|
251 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
252 |
outputs=audio_output
|
253 |
)
|
254 |
+
|
255 |
clear_btn.click(
|
256 |
fn=lambda: (None, None),
|
257 |
inputs=[],
|
258 |
outputs=[text_input, audio_output]
|
259 |
)
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
if __name__ == "__main__":
|
262 |
+
demo.queue().launch(share=False)
|