|
|
|
|
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
import torch |
|
|
|
|
|
model_path = "Athagi/Agillm-v2" |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path) |
|
|
|
|
|
chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) |
|
|
|
|
|
def chat_with_model(user_input): |
|
response = chatbot(user_input, max_length=200, do_sample=True, temperature=0.7) |
|
return response[0]['generated_text'] |
|
|
|
|
|
interface = gr.Interface( |
|
fn=chat_with_model, |
|
inputs="text", |
|
outputs="text", |
|
title="Chat with Agillm-v2", |
|
description="Type a message and interact with the Agillm-v2 model.", |
|
theme="huggingface" |
|
) |
|
|
|
|
|
interface.launch() |