Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load the model and tokenizer from Hugging Face
|
8 |
+
model_path = "Athagi/Agillm-v2" # Model loaded from Hugging Face Hub
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
11 |
+
|
12 |
+
# Create a text generation pipeline
|
13 |
+
chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
14 |
+
|
15 |
+
# Function to generate response
|
16 |
+
def chat_with_model(user_input):
|
17 |
+
response = chatbot(user_input, max_length=200, do_sample=True, temperature=0.7)
|
18 |
+
return response[0]['generated_text']
|
19 |
+
|
20 |
+
# Gradio interface
|
21 |
+
interface = gr.Interface(
|
22 |
+
fn=chat_with_model, # Function to generate the response
|
23 |
+
inputs="text", # Input: Text box for user input
|
24 |
+
outputs="text", # Output: Generated response
|
25 |
+
title="Chat with Agillm-v2", # Title of the app
|
26 |
+
description="Type a message and interact with the Agillm-v2 model.",
|
27 |
+
theme="huggingface" # Optional: Use Hugging Face theme
|
28 |
+
)
|
29 |
+
|
30 |
+
# Launch the app
|
31 |
+
interface.launch()
|