Ateeqq's picture
Update app.py
27b4f7a verified
raw
history blame
9.32 kB
import gradio as gr
import torch
from PIL import Image as PILImage
from transformers import AutoImageProcessor, SiglipForImageClassification
import os
import warnings
# --- Configuration ---
MODEL_IDENTIFIER = r"Ateeqq/ai-vs-human-image-detector"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- Suppress specific warnings ---
# Suppress the specific PIL warning about potential decompression bombs
warnings.filterwarnings("ignore", message="Possibly corrupt EXIF data.")
# Suppress transformers warning about loading weights without specifying revision
warnings.filterwarnings("ignore", message=".*You are using the default legacy behaviour.*")
# --- Load Model and Processor (Load once at startup) ---
print(f"Using device: {DEVICE}")
print(f"Loading processor from: {MODEL_IDENTIFIER}")
try:
processor = AutoImageProcessor.from_pretrained(MODEL_IDENTIFIER)
print(f"Loading model from: {MODEL_IDENTIFIER}")
model = SiglipForImageClassification.from_pretrained(MODEL_IDENTIFIER)
model.to(DEVICE)
model.eval()
print("Model and processor loaded successfully.")
except Exception as e:
print(f"FATAL: Error loading model or processor: {e}")
# If the model fails to load, we raise an exception to stop the app
raise gr.Error(f"Failed to load the model: {e}. Cannot start the application.") from e
# --- Prediction Function ---
def classify_image(image_pil):
"""
Classifies an image as AI-generated or Human-made.
Args:
image_pil (PIL.Image.Image): Input image in PIL format.
Returns:
dict: A dictionary mapping class labels ('ai', 'human') to their
confidence scores. Returns an empty dict if input is None.
"""
if image_pil is None:
# Handle case where the user clears the image input
print("Warning: No image provided.")
return {} # Return empty dict, Gradio Label handles this
print("Processing image...")
try:
# Ensure image is RGB
image = image_pil.convert("RGB")
# Preprocess using the loaded processor
inputs = processor(images=image, return_tensors="pt").to(DEVICE)
# Perform inference
print("Running inference...")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Get probabilities using softmax
# outputs.logits is shape [1, num_labels], softmax over the last dim
probabilities = torch.softmax(logits, dim=-1)[0] # Get probabilities for the first (and only) image
# Create a dictionary of label -> score
results = {}
for i, prob in enumerate(probabilities):
label = model.config.id2label[i]
results[label] = round(prob.item(), 4) # Round for cleaner display
print(f"Prediction results: {results}")
return results
except Exception as e:
print(f"Error during prediction: {e}")
# Return error in the format expected by gr.Label
# Provide a user-friendly error message in the output
return {"Error": f"Processing failed. Please try again or use a different image."}
# --- Define Example Images ---
example_dir = "examples"
example_images = []
if os.path.exists(example_dir) and os.listdir(example_dir): # Check if dir exists AND is not empty
for img_name in os.listdir(example_dir):
if img_name.lower().endswith(('.png', '.jpg', '.jpeg', '.webp')):
example_images.append(os.path.join(example_dir, img_name))
if example_images:
print(f"Found examples: {example_images}")
else:
print("No valid image files found in 'examples' directory.")
else:
print("No 'examples' directory found or it's empty. Examples will not be shown.")
# --- Custom CSS ---
css = """
body { font-family: 'Inter', sans-serif; } /* Use a clean sans-serif font */
/* Style the main title */
#app-title {
text-align: center;
font-weight: bold;
font-size: 2.5em; /* Larger title */
margin-bottom: 5px; /* Reduced space below title */
color: #2c3e50; /* Darker color */
}
/* Style the description */
#app-description {
text-align: center;
font-size: 1.1em;
margin-bottom: 25px; /* More space below description */
color: #576574; /* Subdued color */
}
#app-description code { /* Style model name */
font-weight: bold;
background-color: #f1f2f6;
padding: 2px 5px;
border-radius: 4px;
}
#app-description strong { /* Style device name */
color: #1abc9c; /* Highlight color for device */
}
/* Style the results area */
#prediction-label .label-name { font-weight: bold; font-size: 1.1em; }
#prediction-label .confidence { font-size: 1em; }
/* Style the results heading */
#results-heading {
text-align: center;
font-size: 1.2em; /* Slightly larger heading for results */
margin-bottom: 10px; /* Space below heading */
color: #34495e; /* Match other heading colors */
}
/* Style the examples section */
.gradio-container .examples-container { padding-top: 15px; }
.gradio-container .examples-header { font-size: 1.1em; font-weight: bold; margin-bottom: 10px; color: #34495e; }
/* Add a subtle border/shadow to input/output columns for definition */
#input-column, #output-column {
border: 1px solid #e0e0e0;
border-radius: 12px; /* More rounded corners */
padding: 20px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05); /* Subtle shadow */
background-color: #ffffff; /* Ensure white background */
}
/* Footer styling */
#app-footer {
margin-top: 40px;
padding-top: 20px;
border-top: 1px solid #dfe6e9;
text-align: center;
font-size: 0.9em;
color: #8395a7;
}
#app-footer a { color: #3498db; text-decoration: none; }
#app-footer a:hover { text-decoration: underline; }
"""
# --- Gradio Interface using Blocks and Theme ---
# Choose a theme: gr.themes.Soft(), gr.themes.Monochrome(), gr.themes.Glass(), etc.
theme = gr.themes.Soft(
primary_hue="emerald", # Color scheme based on emerald green
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_lg, # Larger corner radius
spacing_size=gr.themes.sizes.spacing_lg, # More spacing
).set(
# Further fine-tuning
body_background_fill="#f8f9fa", # Very light grey background
block_radius="12px",
)
with gr.Blocks(theme=theme, css=css) as iface:
# Title and Description using Markdown for better formatting
gr.Markdown("# AI vs Human Image Detector", elem_id="app-title")
gr.Markdown(
f"Upload an image to classify if it was likely generated by AI or created by a human. "
f"Uses the `{MODEL_IDENTIFIER}` model. Running on **{str(DEVICE).upper()}**.",
elem_id="app-description"
)
# Main layout with Input and Output side-by-side
with gr.Row(variant='panel'): # 'panel' adds a light border/background
with gr.Column(scale=1, min_width=300, elem_id="input-column"):
image_input = gr.Image(
type="pil",
label="πŸ–ΌοΈ Upload Your Image",
sources=["upload", "webcam", "clipboard"],
height=400, # Adjust height as needed
)
submit_button = gr.Button("πŸ” Classify Image", variant="primary") # Make button prominent
with gr.Column(scale=1, min_width=300, elem_id="output-column"):
# Use elem_id and target with CSS for styling
gr.Markdown("πŸ“Š **Prediction Results**", elem_id="results-heading")
result_output = gr.Label(
num_top_classes=2,
label="Classification",
elem_id="prediction-label"
)
# Examples Section
if example_images: # Only show examples if they exist and list is not empty
gr.Examples(
examples=example_images,
inputs=image_input,
outputs=result_output,
fn=classify_image,
cache_examples=True, # Caching is good for static examples
label="✨ Click an Example to Try!"
)
# Footer / Article section
gr.Markdown(
"""
---
This application uses a fine-tuned [SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip) vision model
specifically trained to differentiate between images generated by Artificial Intelligence and those created by humans.
You can find the model card here: <a href='https://huggingface.co/{model_id}' target='_blank'>{model_id}</a>
Fine tuning code available at [https://exnrt.com/blog/ai/fine-tuning-siglip2/](https://exnrt.com/blog/ai/fine-tuning-siglip2/).
""".format(model_id=MODEL_IDENTIFIER),
elem_id="app-footer"
)
# Connect the button click or image change to the prediction function
# Use api_name for potential API usage later
submit_button.click(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_button")
image_input.change(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_change")
# --- Launch the App ---
if __name__ == "__main__":
print("Launching Gradio interface...")
iface.launch() # Add share=True for temporary public link if needed: iface.launch(share=True)
print("Gradio interface launched.")