Spaces:
Running
Running
File size: 9,318 Bytes
43655b0 27b4f7a 43655b0 27b4f7a 43655b0 27b4f7a 43655b0 27b4f7a 43655b0 27b4f7a 43655b0 27b4f7a 43655b0 27b4f7a 43655b0 27b4f7a 43655b0 27b4f7a 43655b0 27b4f7a 43655b0 27b4f7a 43655b0 727b540 43655b0 727b540 27b4f7a 43655b0 727b540 43655b0 27b4f7a 43655b0 27b4f7a 43655b0 727b540 27b4f7a 727b540 27b4f7a 727b540 27b4f7a 727b540 43655b0 727b540 43655b0 727b540 27b4f7a 727b540 27b4f7a 727b540 27b4f7a 727b540 27b4f7a 727b540 27b4f7a 727b540 43655b0 27b4f7a 43655b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import torch
from PIL import Image as PILImage
from transformers import AutoImageProcessor, SiglipForImageClassification
import os
import warnings
# --- Configuration ---
MODEL_IDENTIFIER = r"Ateeqq/ai-vs-human-image-detector"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- Suppress specific warnings ---
# Suppress the specific PIL warning about potential decompression bombs
warnings.filterwarnings("ignore", message="Possibly corrupt EXIF data.")
# Suppress transformers warning about loading weights without specifying revision
warnings.filterwarnings("ignore", message=".*You are using the default legacy behaviour.*")
# --- Load Model and Processor (Load once at startup) ---
print(f"Using device: {DEVICE}")
print(f"Loading processor from: {MODEL_IDENTIFIER}")
try:
processor = AutoImageProcessor.from_pretrained(MODEL_IDENTIFIER)
print(f"Loading model from: {MODEL_IDENTIFIER}")
model = SiglipForImageClassification.from_pretrained(MODEL_IDENTIFIER)
model.to(DEVICE)
model.eval()
print("Model and processor loaded successfully.")
except Exception as e:
print(f"FATAL: Error loading model or processor: {e}")
# If the model fails to load, we raise an exception to stop the app
raise gr.Error(f"Failed to load the model: {e}. Cannot start the application.") from e
# --- Prediction Function ---
def classify_image(image_pil):
"""
Classifies an image as AI-generated or Human-made.
Args:
image_pil (PIL.Image.Image): Input image in PIL format.
Returns:
dict: A dictionary mapping class labels ('ai', 'human') to their
confidence scores. Returns an empty dict if input is None.
"""
if image_pil is None:
# Handle case where the user clears the image input
print("Warning: No image provided.")
return {} # Return empty dict, Gradio Label handles this
print("Processing image...")
try:
# Ensure image is RGB
image = image_pil.convert("RGB")
# Preprocess using the loaded processor
inputs = processor(images=image, return_tensors="pt").to(DEVICE)
# Perform inference
print("Running inference...")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Get probabilities using softmax
# outputs.logits is shape [1, num_labels], softmax over the last dim
probabilities = torch.softmax(logits, dim=-1)[0] # Get probabilities for the first (and only) image
# Create a dictionary of label -> score
results = {}
for i, prob in enumerate(probabilities):
label = model.config.id2label[i]
results[label] = round(prob.item(), 4) # Round for cleaner display
print(f"Prediction results: {results}")
return results
except Exception as e:
print(f"Error during prediction: {e}")
# Return error in the format expected by gr.Label
# Provide a user-friendly error message in the output
return {"Error": f"Processing failed. Please try again or use a different image."}
# --- Define Example Images ---
example_dir = "examples"
example_images = []
if os.path.exists(example_dir) and os.listdir(example_dir): # Check if dir exists AND is not empty
for img_name in os.listdir(example_dir):
if img_name.lower().endswith(('.png', '.jpg', '.jpeg', '.webp')):
example_images.append(os.path.join(example_dir, img_name))
if example_images:
print(f"Found examples: {example_images}")
else:
print("No valid image files found in 'examples' directory.")
else:
print("No 'examples' directory found or it's empty. Examples will not be shown.")
# --- Custom CSS ---
css = """
body { font-family: 'Inter', sans-serif; } /* Use a clean sans-serif font */
/* Style the main title */
#app-title {
text-align: center;
font-weight: bold;
font-size: 2.5em; /* Larger title */
margin-bottom: 5px; /* Reduced space below title */
color: #2c3e50; /* Darker color */
}
/* Style the description */
#app-description {
text-align: center;
font-size: 1.1em;
margin-bottom: 25px; /* More space below description */
color: #576574; /* Subdued color */
}
#app-description code { /* Style model name */
font-weight: bold;
background-color: #f1f2f6;
padding: 2px 5px;
border-radius: 4px;
}
#app-description strong { /* Style device name */
color: #1abc9c; /* Highlight color for device */
}
/* Style the results area */
#prediction-label .label-name { font-weight: bold; font-size: 1.1em; }
#prediction-label .confidence { font-size: 1em; }
/* Style the results heading */
#results-heading {
text-align: center;
font-size: 1.2em; /* Slightly larger heading for results */
margin-bottom: 10px; /* Space below heading */
color: #34495e; /* Match other heading colors */
}
/* Style the examples section */
.gradio-container .examples-container { padding-top: 15px; }
.gradio-container .examples-header { font-size: 1.1em; font-weight: bold; margin-bottom: 10px; color: #34495e; }
/* Add a subtle border/shadow to input/output columns for definition */
#input-column, #output-column {
border: 1px solid #e0e0e0;
border-radius: 12px; /* More rounded corners */
padding: 20px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05); /* Subtle shadow */
background-color: #ffffff; /* Ensure white background */
}
/* Footer styling */
#app-footer {
margin-top: 40px;
padding-top: 20px;
border-top: 1px solid #dfe6e9;
text-align: center;
font-size: 0.9em;
color: #8395a7;
}
#app-footer a { color: #3498db; text-decoration: none; }
#app-footer a:hover { text-decoration: underline; }
"""
# --- Gradio Interface using Blocks and Theme ---
# Choose a theme: gr.themes.Soft(), gr.themes.Monochrome(), gr.themes.Glass(), etc.
theme = gr.themes.Soft(
primary_hue="emerald", # Color scheme based on emerald green
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_lg, # Larger corner radius
spacing_size=gr.themes.sizes.spacing_lg, # More spacing
).set(
# Further fine-tuning
body_background_fill="#f8f9fa", # Very light grey background
block_radius="12px",
)
with gr.Blocks(theme=theme, css=css) as iface:
# Title and Description using Markdown for better formatting
gr.Markdown("# AI vs Human Image Detector", elem_id="app-title")
gr.Markdown(
f"Upload an image to classify if it was likely generated by AI or created by a human. "
f"Uses the `{MODEL_IDENTIFIER}` model. Running on **{str(DEVICE).upper()}**.",
elem_id="app-description"
)
# Main layout with Input and Output side-by-side
with gr.Row(variant='panel'): # 'panel' adds a light border/background
with gr.Column(scale=1, min_width=300, elem_id="input-column"):
image_input = gr.Image(
type="pil",
label="πΌοΈ Upload Your Image",
sources=["upload", "webcam", "clipboard"],
height=400, # Adjust height as needed
)
submit_button = gr.Button("π Classify Image", variant="primary") # Make button prominent
with gr.Column(scale=1, min_width=300, elem_id="output-column"):
# Use elem_id and target with CSS for styling
gr.Markdown("π **Prediction Results**", elem_id="results-heading")
result_output = gr.Label(
num_top_classes=2,
label="Classification",
elem_id="prediction-label"
)
# Examples Section
if example_images: # Only show examples if they exist and list is not empty
gr.Examples(
examples=example_images,
inputs=image_input,
outputs=result_output,
fn=classify_image,
cache_examples=True, # Caching is good for static examples
label="β¨ Click an Example to Try!"
)
# Footer / Article section
gr.Markdown(
"""
---
This application uses a fine-tuned [SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip) vision model
specifically trained to differentiate between images generated by Artificial Intelligence and those created by humans.
You can find the model card here: <a href='https://huggingface.co/{model_id}' target='_blank'>{model_id}</a>
Fine tuning code available at [https://exnrt.com/blog/ai/fine-tuning-siglip2/](https://exnrt.com/blog/ai/fine-tuning-siglip2/).
""".format(model_id=MODEL_IDENTIFIER),
elem_id="app-footer"
)
# Connect the button click or image change to the prediction function
# Use api_name for potential API usage later
submit_button.click(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_button")
image_input.change(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_image_change")
# --- Launch the App ---
if __name__ == "__main__":
print("Launching Gradio interface...")
iface.launch() # Add share=True for temporary public link if needed: iface.launch(share=True)
print("Gradio interface launched.") |