Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,9 +10,7 @@ MODEL_IDENTIFIER = r"Ateeqq/ai-vs-human-image-detector"
|
|
10 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
|
12 |
# --- Suppress specific warnings ---
|
13 |
-
# Suppress the specific PIL warning about potential decompression bombs
|
14 |
warnings.filterwarnings("ignore", message="Possibly corrupt EXIF data.")
|
15 |
-
# Suppress transformers warning about loading weights without specifying revision
|
16 |
warnings.filterwarnings("ignore", message=".*You are using the default legacy behaviour.*")
|
17 |
|
18 |
|
@@ -28,10 +26,9 @@ try:
|
|
28 |
print("Model and processor loaded successfully.")
|
29 |
except Exception as e:
|
30 |
print(f"FATAL: Error loading model or processor: {e}")
|
31 |
-
# If the model fails to load, we raise an exception to stop the app
|
32 |
raise gr.Error(f"Failed to load the model: {e}. Cannot start the application.") from e
|
33 |
|
34 |
-
# --- Prediction Function ---
|
35 |
def classify_image(image_pil):
|
36 |
"""
|
37 |
Classifies an image as AI-generated or Human-made.
|
@@ -44,47 +41,35 @@ def classify_image(image_pil):
|
|
44 |
confidence scores. Returns an empty dict if input is None.
|
45 |
"""
|
46 |
if image_pil is None:
|
47 |
-
# Handle case where the user clears the image input
|
48 |
print("Warning: No image provided.")
|
49 |
-
return {}
|
50 |
|
51 |
print("Processing image...")
|
52 |
try:
|
53 |
-
# Ensure image is RGB
|
54 |
image = image_pil.convert("RGB")
|
55 |
-
|
56 |
-
# Preprocess using the loaded processor
|
57 |
inputs = processor(images=image, return_tensors="pt").to(DEVICE)
|
58 |
|
59 |
-
# Perform inference
|
60 |
print("Running inference...")
|
61 |
with torch.no_grad():
|
62 |
outputs = model(**inputs)
|
63 |
logits = outputs.logits
|
64 |
|
65 |
-
|
66 |
-
# outputs.logits is shape [1, num_labels], softmax over the last dim
|
67 |
-
probabilities = torch.softmax(logits, dim=-1)[0] # Get probabilities for the first (and only) image
|
68 |
|
69 |
-
# Create a dictionary of label -> score
|
70 |
results = {}
|
71 |
for i, prob in enumerate(probabilities):
|
72 |
label = model.config.id2label[i]
|
73 |
-
results[label] = prob.item() #
|
74 |
|
75 |
print(f"Prediction results: {results}")
|
76 |
return results
|
77 |
|
78 |
except Exception as e:
|
79 |
print(f"Error during prediction: {e}")
|
80 |
-
#
|
81 |
-
|
82 |
-
return {"Error": f"Processing failed: {e}"} # Or return an error message
|
83 |
-
|
84 |
-
# --- Gradio Interface Definition ---
|
85 |
|
86 |
-
# Define Example Images
|
87 |
-
# Create an 'examples' folder in your Space repo and put images there
|
88 |
example_dir = "examples"
|
89 |
example_images = []
|
90 |
if os.path.exists(example_dir):
|
@@ -93,33 +78,150 @@ if os.path.exists(example_dir):
|
|
93 |
example_images.append(os.path.join(example_dir, img_name))
|
94 |
print(f"Found examples: {example_images}")
|
95 |
else:
|
96 |
-
print("No 'examples' directory found. Examples will not be shown.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
outputs=gr.Label(num_top_classes=2, label="Prediction Results"), # Use gr.Label for classification output
|
104 |
-
title="AI vs Human Image Detector",
|
105 |
-
description=(
|
106 |
f"Upload an image to classify if it was likely generated by AI or created by a human. "
|
107 |
-
f"Uses the `{MODEL_IDENTIFIER}` model
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
# --- Launch the App ---
|
122 |
if __name__ == "__main__":
|
123 |
print("Launching Gradio interface...")
|
124 |
-
iface.launch()
|
125 |
print("Gradio interface launched.")
|
|
|
10 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
|
12 |
# --- Suppress specific warnings ---
|
|
|
13 |
warnings.filterwarnings("ignore", message="Possibly corrupt EXIF data.")
|
|
|
14 |
warnings.filterwarnings("ignore", message=".*You are using the default legacy behaviour.*")
|
15 |
|
16 |
|
|
|
26 |
print("Model and processor loaded successfully.")
|
27 |
except Exception as e:
|
28 |
print(f"FATAL: Error loading model or processor: {e}")
|
|
|
29 |
raise gr.Error(f"Failed to load the model: {e}. Cannot start the application.") from e
|
30 |
|
31 |
+
# --- Prediction Function (No changes needed) ---
|
32 |
def classify_image(image_pil):
|
33 |
"""
|
34 |
Classifies an image as AI-generated or Human-made.
|
|
|
41 |
confidence scores. Returns an empty dict if input is None.
|
42 |
"""
|
43 |
if image_pil is None:
|
|
|
44 |
print("Warning: No image provided.")
|
45 |
+
return {}
|
46 |
|
47 |
print("Processing image...")
|
48 |
try:
|
|
|
49 |
image = image_pil.convert("RGB")
|
|
|
|
|
50 |
inputs = processor(images=image, return_tensors="pt").to(DEVICE)
|
51 |
|
|
|
52 |
print("Running inference...")
|
53 |
with torch.no_grad():
|
54 |
outputs = model(**inputs)
|
55 |
logits = outputs.logits
|
56 |
|
57 |
+
probabilities = torch.softmax(logits, dim=-1)[0]
|
|
|
|
|
58 |
|
|
|
59 |
results = {}
|
60 |
for i, prob in enumerate(probabilities):
|
61 |
label = model.config.id2label[i]
|
62 |
+
results[label] = round(prob.item(), 4) # Round for cleaner display
|
63 |
|
64 |
print(f"Prediction results: {results}")
|
65 |
return results
|
66 |
|
67 |
except Exception as e:
|
68 |
print(f"Error during prediction: {e}")
|
69 |
+
# Return error in the format expected by gr.Label
|
70 |
+
return {"Error": f"Processing failed"}
|
|
|
|
|
|
|
71 |
|
72 |
+
# --- Define Example Images ---
|
|
|
73 |
example_dir = "examples"
|
74 |
example_images = []
|
75 |
if os.path.exists(example_dir):
|
|
|
78 |
example_images.append(os.path.join(example_dir, img_name))
|
79 |
print(f"Found examples: {example_images}")
|
80 |
else:
|
81 |
+
print("No 'examples' directory found or it's empty. Examples will not be shown.")
|
82 |
+
|
83 |
+
|
84 |
+
# --- Custom CSS ---
|
85 |
+
# You can experiment with different CSS here
|
86 |
+
css = """
|
87 |
+
body { font-family: 'Inter', sans-serif; } /* Use a clean sans-serif font */
|
88 |
+
|
89 |
+
/* Style the main title */
|
90 |
+
#app-title {
|
91 |
+
text-align: center;
|
92 |
+
font-weight: bold;
|
93 |
+
font-size: 2.5em; /* Larger title */
|
94 |
+
margin-bottom: 5px; /* Reduced space below title */
|
95 |
+
color: #2c3e50; /* Darker color */
|
96 |
+
}
|
97 |
+
|
98 |
+
/* Style the description */
|
99 |
+
#app-description {
|
100 |
+
text-align: center;
|
101 |
+
font-size: 1.1em;
|
102 |
+
margin-bottom: 25px; /* More space below description */
|
103 |
+
color: #576574; /* Subdued color */
|
104 |
+
}
|
105 |
+
#app-description code { /* Style model name */
|
106 |
+
font-weight: bold;
|
107 |
+
background-color: #f1f2f6;
|
108 |
+
padding: 2px 5px;
|
109 |
+
border-radius: 4px;
|
110 |
+
}
|
111 |
+
#app-description strong { /* Style device name */
|
112 |
+
color: #1abc9c; /* Highlight color for device */
|
113 |
+
}
|
114 |
+
|
115 |
+
/* Style the results area */
|
116 |
+
#prediction-label .label-name { font-weight: bold; font-size: 1.1em; }
|
117 |
+
#prediction-label .confidence { font-size: 1em; }
|
118 |
+
|
119 |
+
/* Style the examples section */
|
120 |
+
.gradio-container .examples-container { padding-top: 15px; }
|
121 |
+
.gradio-container .examples-header { font-size: 1.1em; font-weight: bold; margin-bottom: 10px; color: #34495e; }
|
122 |
+
|
123 |
+
/* Add a subtle border/shadow to input/output columns for definition */
|
124 |
+
#input-column, #output-column {
|
125 |
+
border: 1px solid #e0e0e0;
|
126 |
+
border-radius: 12px; /* More rounded corners */
|
127 |
+
padding: 20px;
|
128 |
+
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05); /* Subtle shadow */
|
129 |
+
background-color: #ffffff; /* Ensure white background */
|
130 |
+
}
|
131 |
+
|
132 |
+
/* Footer styling */
|
133 |
+
#app-footer {
|
134 |
+
margin-top: 40px;
|
135 |
+
padding-top: 20px;
|
136 |
+
border-top: 1px solid #dfe6e9;
|
137 |
+
text-align: center;
|
138 |
+
font-size: 0.9em;
|
139 |
+
color: #8395a7;
|
140 |
+
}
|
141 |
+
#app-footer a { color: #3498db; text-decoration: none; }
|
142 |
+
#app-footer a:hover { text-decoration: underline; }
|
143 |
+
"""
|
144 |
+
|
145 |
+
# --- Gradio Interface using Blocks and Theme ---
|
146 |
+
# Choose a theme: gr.themes.Soft(), gr.themes.Monochrome(), gr.themes.Glass()
|
147 |
+
# Or customize the default: gr.themes.Default().set(radius_size="sm", spacing_size="sm")
|
148 |
+
theme = gr.themes.Soft(
|
149 |
+
primary_hue="emerald", # Color scheme based on emerald green
|
150 |
+
secondary_hue="blue",
|
151 |
+
neutral_hue="slate",
|
152 |
+
radius_size=gr.themes.sizes.radius_lg, # Larger corner radius
|
153 |
+
spacing_size=gr.themes.sizes.spacing_lg, # More spacing
|
154 |
+
).set(
|
155 |
+
# Further fine-tuning
|
156 |
+
body_background_fill="#f1f2f6", # Light grey background
|
157 |
+
block_radius="12px",
|
158 |
+
)
|
159 |
|
160 |
|
161 |
+
with gr.Blocks(theme=theme, css=css) as iface:
|
162 |
+
# Title and Description using Markdown for better formatting
|
163 |
+
gr.Markdown("# AI vs Human Image Detector", elem_id="app-title")
|
164 |
+
gr.Markdown(
|
|
|
|
|
|
|
165 |
f"Upload an image to classify if it was likely generated by AI or created by a human. "
|
166 |
+
f"Uses the `{MODEL_IDENTIFIER}` model. Running on **{str(DEVICE).upper()}**.",
|
167 |
+
elem_id="app-description"
|
168 |
+
)
|
169 |
+
|
170 |
+
# Main layout with Input and Output side-by-side
|
171 |
+
with gr.Row(variant='panel'): # 'panel' adds a light border/background
|
172 |
+
with gr.Column(scale=1, min_width=300, elem_id="input-column"):
|
173 |
+
image_input = gr.Image(
|
174 |
+
type="pil",
|
175 |
+
label="🖼️ Upload Your Image",
|
176 |
+
sources=["upload", "webcam", "clipboard"],
|
177 |
+
height=400, # Adjust height as needed
|
178 |
+
)
|
179 |
+
submit_button = gr.Button("🔍 Classify Image", variant="primary") # Make button prominent
|
180 |
+
|
181 |
+
with gr.Column(scale=1, min_width=300, elem_id="output-column"):
|
182 |
+
gr.Markdown("📊 **Prediction Results**", style={"text-align": "center"}) # Centered heading for results
|
183 |
+
result_output = gr.Label(
|
184 |
+
num_top_classes=2,
|
185 |
+
label="Classification",
|
186 |
+
elem_id="prediction-label"
|
187 |
+
)
|
188 |
+
|
189 |
+
# Examples Section
|
190 |
+
if example_images: # Only show examples if they exist
|
191 |
+
gr.Examples(
|
192 |
+
examples=example_images,
|
193 |
+
inputs=image_input,
|
194 |
+
outputs=result_output,
|
195 |
+
fn=classify_image,
|
196 |
+
cache_examples=True, # Caching is good for static examples
|
197 |
+
label="✨ Click an Example to Try!"
|
198 |
+
)
|
199 |
+
|
200 |
+
# Footer / Article section
|
201 |
+
gr.Markdown(
|
202 |
+
"""
|
203 |
+
---
|
204 |
+
**How it Works:**
|
205 |
+
This application uses a fine-tuned [SigLIP](https://huggingface.co/docs/transformers/model_doc/siglip) vision model
|
206 |
+
specifically trained to differentiate between images generated by Artificial Intelligence and those created by humans.
|
207 |
+
|
208 |
+
Fine tuning code available at [https://exnrt.com/blog/ai/fine-tuning-siglip2/](https://exnrt.com/blog/ai/fine-tuning-siglip2/).
|
209 |
+
|
210 |
+
**Model:**
|
211 |
+
* You can find the model card here: <a href='https://huggingface.co/{model_id}' target='_blank'>{model_id}</a>
|
212 |
+
|
213 |
+
""".format(model_id=MODEL_IDENTIFIER),
|
214 |
+
elem_id="app-footer"
|
215 |
+
)
|
216 |
+
|
217 |
+
# Connect the button click or image change to the prediction function
|
218 |
+
submit_button.click(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_button")
|
219 |
+
# Allow prediction on image change/upload as well (optional, can be convenient)
|
220 |
+
image_input.change(fn=classify_image, inputs=image_input, outputs=result_output, api_name="classify_change")
|
221 |
+
|
222 |
|
223 |
# --- Launch the App ---
|
224 |
if __name__ == "__main__":
|
225 |
print("Launching Gradio interface...")
|
226 |
+
iface.launch() # share=True to create a public link (useful for testing)
|
227 |
print("Gradio interface launched.")
|