Spaces:
Running
Running
import gradio as gr | |
from datasets import load_dataset | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
from transformers import pipeline | |
# Load dataset | |
dataset = load_dataset("lex_glue", "scotus") | |
corpus = [doc['text'] for doc in dataset['train'].select(range(200))] # just 200 to keep it light | |
# Embedding model | |
embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
corpus_embeddings = embedder.encode(corpus, convert_to_numpy=True) | |
# Build FAISS index | |
dimension = corpus_embeddings.shape[1] | |
index = faiss.IndexFlatL2(dimension) | |
index.add(corpus_embeddings) | |
# Text generation model | |
gen_pipeline = pipeline("text2text-generation", model="facebook/bart-large-cnn") | |
# RAG-like query function | |
def rag_query(user_question): | |
question_embedding = embedder.encode([user_question]) | |
_, indices = index.search(np.array(question_embedding), k=3) | |
context = " ".join([corpus[i] for i in indices[0]]) | |
prompt = f"Question: {user_question}\nContext: {context}\nAnswer:" | |
result = gen_pipeline(prompt, max_length=250, do_sample=False)[0]['generated_text'] | |
return result | |
# Gradio UI | |
def chatbot_interface(query): | |
return rag_query(query) | |
iface = gr.Interface(fn=chatbot_interface, | |
inputs="text", | |
outputs="text", | |
title="π§ββοΈ Legal Assistant Chatbot", | |
description="Ask legal questions based on case data (LexGLUE - SCOTUS subset)") | |
iface.launch() |