Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
# Load dataset
|
9 |
+
dataset = load_dataset("lex_glue", "scotus")
|
10 |
+
corpus = [doc['text'] for doc in dataset['train'].select(range(200))] # just 200 to keep it light
|
11 |
+
|
12 |
+
# Embedding model
|
13 |
+
embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
14 |
+
corpus_embeddings = embedder.encode(corpus, convert_to_numpy=True)
|
15 |
+
|
16 |
+
# Build FAISS index
|
17 |
+
dimension = corpus_embeddings.shape[1]
|
18 |
+
index = faiss.IndexFlatL2(dimension)
|
19 |
+
index.add(corpus_embeddings)
|
20 |
+
|
21 |
+
# Text generation model
|
22 |
+
gen_pipeline = pipeline("text2text-generation", model="facebook/bart-large-cnn")
|
23 |
+
|
24 |
+
# RAG-like query function
|
25 |
+
def rag_query(user_question):
|
26 |
+
question_embedding = embedder.encode([user_question])
|
27 |
+
_, indices = index.search(np.array(question_embedding), k=3)
|
28 |
+
context = " ".join([corpus[i] for i in indices[0]])
|
29 |
+
|
30 |
+
prompt = f"Question: {user_question}\nContext: {context}\nAnswer:"
|
31 |
+
result = gen_pipeline(prompt, max_length=250, do_sample=False)[0]['generated_text']
|
32 |
+
return result
|
33 |
+
|
34 |
+
# Gradio UI
|
35 |
+
def chatbot_interface(query):
|
36 |
+
return rag_query(query)
|
37 |
+
|
38 |
+
iface = gr.Interface(fn=chatbot_interface,
|
39 |
+
inputs="text",
|
40 |
+
outputs="text",
|
41 |
+
title="🧑⚖️ Legal Assistant Chatbot",
|
42 |
+
description="Ask legal questions based on case data (LexGLUE - SCOTUS subset)")
|
43 |
+
|
44 |
+
iface.launch()
|