Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,10 @@ from openpyxl.utils import get_column_letter
|
|
18 |
from io import BytesIO
|
19 |
import base64
|
20 |
import hashlib
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Configure logging
|
23 |
logging.basicConfig(level=logging.INFO)
|
@@ -32,6 +36,17 @@ CONFIDENCE_THRESHOLD = 0.65
|
|
32 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
33 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Get password hash from environment variable (more secure)
|
36 |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
|
37 |
|
@@ -41,17 +56,6 @@ if not ADMIN_PASSWORD_HASH:
|
|
41 |
# Excel file path for logs
|
42 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
43 |
|
44 |
-
|
45 |
-
import requests
|
46 |
-
import base64
|
47 |
-
import os
|
48 |
-
import tempfile
|
49 |
-
from typing import Dict, List, Optional, Union, Tuple
|
50 |
-
import mimetypes
|
51 |
-
import logging
|
52 |
-
import time
|
53 |
-
from pathlib import Path
|
54 |
-
|
55 |
# OCR API settings
|
56 |
OCR_API_KEY = "9e11346f1288957" # This is a partial key - replace with the full one
|
57 |
OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
|
@@ -205,172 +209,6 @@ class OCRProcessor:
|
|
205 |
return mime_type
|
206 |
|
207 |
|
208 |
-
# Function to be integrated with the main application
|
209 |
-
def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
210 |
-
"""
|
211 |
-
Handle file upload, OCR processing, and text analysis
|
212 |
-
|
213 |
-
Args:
|
214 |
-
file_obj: Uploaded file object from Gradio
|
215 |
-
mode: Analysis mode (quick or detailed)
|
216 |
-
classifier: The TextClassifier instance
|
217 |
-
|
218 |
-
Returns:
|
219 |
-
Analysis results as a tuple (same format as original analyze_text function)
|
220 |
-
"""
|
221 |
-
if file_obj is None:
|
222 |
-
return (
|
223 |
-
"No file uploaded",
|
224 |
-
"Please upload a file to analyze",
|
225 |
-
"No file uploaded for analysis"
|
226 |
-
)
|
227 |
-
|
228 |
-
# Create a temporary file
|
229 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=Path(file_obj.name).suffix) as temp_file:
|
230 |
-
temp_file_path = temp_file.name
|
231 |
-
# Write uploaded file to the temporary file
|
232 |
-
temp_file.write(file_obj.read())
|
233 |
-
|
234 |
-
try:
|
235 |
-
# Process the file with OCR
|
236 |
-
ocr_processor = OCRProcessor()
|
237 |
-
ocr_result = ocr_processor.process_file(temp_file_path)
|
238 |
-
|
239 |
-
if not ocr_result["success"]:
|
240 |
-
return (
|
241 |
-
"OCR Processing Error",
|
242 |
-
ocr_result["error"],
|
243 |
-
"Failed to extract text from the uploaded file"
|
244 |
-
)
|
245 |
-
|
246 |
-
# Get the extracted text
|
247 |
-
extracted_text = ocr_result["text"]
|
248 |
-
|
249 |
-
# If no text was extracted
|
250 |
-
if not extracted_text.strip():
|
251 |
-
return (
|
252 |
-
"No text extracted",
|
253 |
-
"The OCR process did not extract any text from the uploaded file.",
|
254 |
-
"No text was found in the uploaded file"
|
255 |
-
)
|
256 |
-
|
257 |
-
# Call the original text analysis function with the extracted text
|
258 |
-
return analyze_text(extracted_text, mode, classifier)
|
259 |
-
|
260 |
-
finally:
|
261 |
-
# Clean up the temporary file
|
262 |
-
if os.path.exists(temp_file_path):
|
263 |
-
os.remove(temp_file_path)
|
264 |
-
|
265 |
-
|
266 |
-
# Modified Gradio interface setup function to include file upload
|
267 |
-
def setup_gradio_interface(classifier):
|
268 |
-
"""
|
269 |
-
Set up Gradio interface with text input and file upload options
|
270 |
-
|
271 |
-
Args:
|
272 |
-
classifier: The TextClassifier instance
|
273 |
-
|
274 |
-
Returns:
|
275 |
-
Gradio Interface object
|
276 |
-
"""
|
277 |
-
import gradio as gr
|
278 |
-
|
279 |
-
with gr.Blocks(title="AI Text Detector") as demo:
|
280 |
-
gr.Markdown("# AI Text Detector with Document Upload")
|
281 |
-
gr.Markdown("Analyze text to detect if it was written by a human or AI. You can paste text directly or upload images, PDFs, or Word documents.")
|
282 |
-
|
283 |
-
with gr.Tab("Text Input"):
|
284 |
-
text_input = gr.Textbox(
|
285 |
-
lines=8,
|
286 |
-
placeholder="Enter text to analyze...",
|
287 |
-
label="Input Text"
|
288 |
-
)
|
289 |
-
|
290 |
-
mode_selection = gr.Radio(
|
291 |
-
choices=["quick", "detailed"],
|
292 |
-
value="quick",
|
293 |
-
label="Analysis Mode",
|
294 |
-
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
|
295 |
-
)
|
296 |
-
|
297 |
-
text_submit_button = gr.Button("Analyze Text")
|
298 |
-
|
299 |
-
output_html = gr.HTML(label="Highlighted Analysis")
|
300 |
-
output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
301 |
-
output_result = gr.Textbox(label="Overall Result", lines=4)
|
302 |
-
|
303 |
-
text_submit_button.click(
|
304 |
-
analyze_text,
|
305 |
-
inputs=[text_input, mode_selection, classifier],
|
306 |
-
outputs=[output_html, output_sentences, output_result]
|
307 |
-
)
|
308 |
-
|
309 |
-
with gr.Tab("File Upload"):
|
310 |
-
file_upload = gr.File(
|
311 |
-
label="Upload Document",
|
312 |
-
file_types=["image", "pdf", "doc", "docx"],
|
313 |
-
type="file"
|
314 |
-
)
|
315 |
-
|
316 |
-
file_mode_selection = gr.Radio(
|
317 |
-
choices=["quick", "detailed"],
|
318 |
-
value="quick",
|
319 |
-
label="Analysis Mode",
|
320 |
-
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
|
321 |
-
)
|
322 |
-
|
323 |
-
upload_submit_button = gr.Button("Process and Analyze")
|
324 |
-
|
325 |
-
file_output_html = gr.HTML(label="Highlighted Analysis")
|
326 |
-
file_output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
327 |
-
file_output_result = gr.Textbox(label="Overall Result", lines=4)
|
328 |
-
|
329 |
-
upload_submit_button.click(
|
330 |
-
handle_file_upload_and_analyze,
|
331 |
-
inputs=[file_upload, file_mode_selection, classifier],
|
332 |
-
outputs=[file_output_html, file_output_sentences, file_output_result]
|
333 |
-
)
|
334 |
-
|
335 |
-
gr.Markdown("""
|
336 |
-
### File Upload Limitations
|
337 |
-
- Maximum file size: 1MB
|
338 |
-
- PDF files: Maximum 3 pages (OCR.space API limitation)
|
339 |
-
- Supported formats: Images (PNG, JPG, GIF), PDF, Word documents (DOCX, DOC)
|
340 |
-
""")
|
341 |
-
|
342 |
-
return demo
|
343 |
-
|
344 |
-
|
345 |
-
# This function is a replacement for the original main app setup
|
346 |
-
def setup_app_with_ocr():
|
347 |
-
"""
|
348 |
-
Setup the application with OCR capabilities
|
349 |
-
"""
|
350 |
-
# Initialize the classifier (use existing code)
|
351 |
-
classifier = TextClassifier()
|
352 |
-
|
353 |
-
# Create the Gradio interface with file upload functionality
|
354 |
-
demo = setup_gradio_interface(classifier)
|
355 |
-
|
356 |
-
# Get the FastAPI app from Gradio
|
357 |
-
app = demo.app
|
358 |
-
|
359 |
-
# Add CORS middleware (same as original code)
|
360 |
-
from fastapi.middleware.cors import CORSMiddleware
|
361 |
-
app.add_middleware(
|
362 |
-
CORSMiddleware,
|
363 |
-
allow_origins=["*"], # For development
|
364 |
-
allow_credentials=True,
|
365 |
-
allow_methods=["GET", "POST", "OPTIONS"],
|
366 |
-
allow_headers=["*"],
|
367 |
-
)
|
368 |
-
|
369 |
-
# Return the demo for launching
|
370 |
-
return demo
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
def is_admin_password(input_text: str) -> bool:
|
375 |
"""
|
376 |
Check if the input text matches the admin password using secure hash comparison.
|
@@ -382,6 +220,7 @@ def is_admin_password(input_text: str) -> bool:
|
|
382 |
# Compare hashes (constant-time comparison to prevent timing attacks)
|
383 |
return input_hash == ADMIN_PASSWORD_HASH
|
384 |
|
|
|
385 |
class TextWindowProcessor:
|
386 |
def __init__(self):
|
387 |
try:
|
@@ -433,13 +272,10 @@ class TextWindowProcessor:
|
|
433 |
|
434 |
return windows, window_sentence_indices
|
435 |
|
|
|
436 |
class TextClassifier:
|
437 |
def __init__(self):
|
438 |
-
#
|
439 |
-
if not torch.cuda.is_available():
|
440 |
-
torch.set_num_threads(MAX_WORKERS)
|
441 |
-
torch.set_num_interop_threads(MAX_WORKERS)
|
442 |
-
|
443 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
444 |
self.model_name = MODEL_NAME
|
445 |
self.tokenizer = None
|
@@ -583,7 +419,7 @@ class TextClassifier:
|
|
583 |
for window_idx, indices in enumerate(batch_indices):
|
584 |
center_idx = len(indices) // 2
|
585 |
center_weight = 0.7 # Higher weight for center sentence
|
586 |
-
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
587 |
|
588 |
for pos, sent_idx in enumerate(indices):
|
589 |
# Apply higher weight to center sentence
|
@@ -606,10 +442,10 @@ class TextClassifier:
|
|
606 |
|
607 |
# Apply minimal smoothing at prediction boundaries
|
608 |
if i > 0 and i < len(sentences) - 1:
|
609 |
-
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
610 |
-
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
611 |
-
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
612 |
-
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
613 |
|
614 |
# Check if we're at a prediction boundary
|
615 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
@@ -684,6 +520,65 @@ class TextClassifier:
|
|
684 |
'num_sentences': num_sentences
|
685 |
}
|
686 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
687 |
def initialize_excel_log():
|
688 |
"""Initialize the Excel log file if it doesn't exist."""
|
689 |
if not os.path.exists(EXCEL_LOG_PATH):
|
@@ -711,6 +606,7 @@ def initialize_excel_log():
|
|
711 |
wb.save(EXCEL_LOG_PATH)
|
712 |
logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
|
713 |
|
|
|
714 |
def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
|
715 |
"""Log prediction data to an Excel file in the /tmp directory."""
|
716 |
# Initialize the Excel file if it doesn't exist
|
@@ -753,6 +649,7 @@ def log_prediction_data(input_text, word_count, prediction, confidence, executio
|
|
753 |
logger.error(f"Error logging prediction data to Excel: {str(e)}")
|
754 |
return False
|
755 |
|
|
|
756 |
def get_logs_as_base64():
|
757 |
"""Read the Excel logs file and return as base64 for downloading."""
|
758 |
if not os.path.exists(EXCEL_LOG_PATH):
|
@@ -771,6 +668,7 @@ def get_logs_as_base64():
|
|
771 |
logger.error(f"Error reading Excel logs: {str(e)}")
|
772 |
return None
|
773 |
|
|
|
774 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
775 |
"""Analyze text using specified mode and return formatted results."""
|
776 |
# Check if the input text matches the admin password using secure comparison
|
@@ -890,27 +788,120 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
890 |
overall_result
|
891 |
)
|
892 |
|
893 |
-
# Initialize the classifier globally
|
894 |
-
classifier = TextClassifier()
|
895 |
|
896 |
-
#
|
897 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
898 |
|
899 |
|
900 |
-
#
|
901 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
902 |
|
903 |
-
# Add CORS middleware
|
904 |
-
app.add_middleware(
|
905 |
-
CORSMiddleware,
|
906 |
-
allow_origins=["*"], # For development
|
907 |
-
allow_credentials=True,
|
908 |
-
allow_methods=["GET", "POST", "OPTIONS"],
|
909 |
-
allow_headers=["*"],
|
910 |
-
)
|
911 |
|
912 |
-
#
|
913 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
914 |
demo.queue()
|
915 |
demo.launch(
|
916 |
server_name="0.0.0.0",
|
|
|
18 |
from io import BytesIO
|
19 |
import base64
|
20 |
import hashlib
|
21 |
+
import requests
|
22 |
+
import tempfile
|
23 |
+
from pathlib import Path
|
24 |
+
import mimetypes
|
25 |
|
26 |
# Configure logging
|
27 |
logging.basicConfig(level=logging.INFO)
|
|
|
36 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
37 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
38 |
|
39 |
+
# IMPORTANT: Set PyTorch thread configuration at the module level
|
40 |
+
# before any parallel work starts
|
41 |
+
if not torch.cuda.is_available():
|
42 |
+
# Set thread configuration only once at the beginning
|
43 |
+
torch.set_num_threads(MAX_WORKERS)
|
44 |
+
try:
|
45 |
+
# Only set interop threads if it hasn't been set already
|
46 |
+
torch.set_num_interop_threads(MAX_WORKERS)
|
47 |
+
except RuntimeError as e:
|
48 |
+
logger.warning(f"Could not set interop threads: {str(e)}")
|
49 |
+
|
50 |
# Get password hash from environment variable (more secure)
|
51 |
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
|
52 |
|
|
|
56 |
# Excel file path for logs
|
57 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# OCR API settings
|
60 |
OCR_API_KEY = "9e11346f1288957" # This is a partial key - replace with the full one
|
61 |
OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
|
|
|
209 |
return mime_type
|
210 |
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
def is_admin_password(input_text: str) -> bool:
|
213 |
"""
|
214 |
Check if the input text matches the admin password using secure hash comparison.
|
|
|
220 |
# Compare hashes (constant-time comparison to prevent timing attacks)
|
221 |
return input_hash == ADMIN_PASSWORD_HASH
|
222 |
|
223 |
+
|
224 |
class TextWindowProcessor:
|
225 |
def __init__(self):
|
226 |
try:
|
|
|
272 |
|
273 |
return windows, window_sentence_indices
|
274 |
|
275 |
+
|
276 |
class TextClassifier:
|
277 |
def __init__(self):
|
278 |
+
# FIXED: Removed the thread configuration here, as it's now at the module level
|
|
|
|
|
|
|
|
|
279 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
280 |
self.model_name = MODEL_NAME
|
281 |
self.tokenizer = None
|
|
|
419 |
for window_idx, indices in enumerate(batch_indices):
|
420 |
center_idx = len(indices) // 2
|
421 |
center_weight = 0.7 # Higher weight for center sentence
|
422 |
+
edge_weight = 0.3 / (len(indices) - 1) if len(indices) > 1 else 0 # Distribute remaining weight
|
423 |
|
424 |
for pos, sent_idx in enumerate(indices):
|
425 |
# Apply higher weight to center sentence
|
|
|
442 |
|
443 |
# Apply minimal smoothing at prediction boundaries
|
444 |
if i > 0 and i < len(sentences) - 1:
|
445 |
+
prev_human = sentence_scores[i-1]['human_prob'] / max(sentence_appearances[i-1], 1e-10)
|
446 |
+
prev_ai = sentence_scores[i-1]['ai_prob'] / max(sentence_appearances[i-1], 1e-10)
|
447 |
+
next_human = sentence_scores[i+1]['human_prob'] / max(sentence_appearances[i+1], 1e-10)
|
448 |
+
next_ai = sentence_scores[i+1]['ai_prob'] / max(sentence_appearances[i+1], 1e-10)
|
449 |
|
450 |
# Check if we're at a prediction boundary
|
451 |
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
|
|
520 |
'num_sentences': num_sentences
|
521 |
}
|
522 |
|
523 |
+
|
524 |
+
# Function to handle file upload, OCR processing, and text analysis
|
525 |
+
def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
526 |
+
"""
|
527 |
+
Handle file upload, OCR processing, and text analysis
|
528 |
+
|
529 |
+
Args:
|
530 |
+
file_obj: Uploaded file object from Gradio
|
531 |
+
mode: Analysis mode (quick or detailed)
|
532 |
+
classifier: The TextClassifier instance
|
533 |
+
|
534 |
+
Returns:
|
535 |
+
Analysis results as a tuple (same format as original analyze_text function)
|
536 |
+
"""
|
537 |
+
if file_obj is None:
|
538 |
+
return (
|
539 |
+
"No file uploaded",
|
540 |
+
"Please upload a file to analyze",
|
541 |
+
"No file uploaded for analysis"
|
542 |
+
)
|
543 |
+
|
544 |
+
# Create a temporary file
|
545 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=Path(file_obj.name).suffix) as temp_file:
|
546 |
+
temp_file_path = temp_file.name
|
547 |
+
# Write uploaded file to the temporary file
|
548 |
+
temp_file.write(file_obj.read())
|
549 |
+
|
550 |
+
try:
|
551 |
+
# Process the file with OCR
|
552 |
+
ocr_processor = OCRProcessor()
|
553 |
+
ocr_result = ocr_processor.process_file(temp_file_path)
|
554 |
+
|
555 |
+
if not ocr_result["success"]:
|
556 |
+
return (
|
557 |
+
"OCR Processing Error",
|
558 |
+
ocr_result["error"],
|
559 |
+
"Failed to extract text from the uploaded file"
|
560 |
+
)
|
561 |
+
|
562 |
+
# Get the extracted text
|
563 |
+
extracted_text = ocr_result["text"]
|
564 |
+
|
565 |
+
# If no text was extracted
|
566 |
+
if not extracted_text.strip():
|
567 |
+
return (
|
568 |
+
"No text extracted",
|
569 |
+
"The OCR process did not extract any text from the uploaded file.",
|
570 |
+
"No text was found in the uploaded file"
|
571 |
+
)
|
572 |
+
|
573 |
+
# Call the original text analysis function with the extracted text
|
574 |
+
return analyze_text(extracted_text, mode, classifier)
|
575 |
+
|
576 |
+
finally:
|
577 |
+
# Clean up the temporary file
|
578 |
+
if os.path.exists(temp_file_path):
|
579 |
+
os.remove(temp_file_path)
|
580 |
+
|
581 |
+
|
582 |
def initialize_excel_log():
|
583 |
"""Initialize the Excel log file if it doesn't exist."""
|
584 |
if not os.path.exists(EXCEL_LOG_PATH):
|
|
|
606 |
wb.save(EXCEL_LOG_PATH)
|
607 |
logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
|
608 |
|
609 |
+
|
610 |
def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
|
611 |
"""Log prediction data to an Excel file in the /tmp directory."""
|
612 |
# Initialize the Excel file if it doesn't exist
|
|
|
649 |
logger.error(f"Error logging prediction data to Excel: {str(e)}")
|
650 |
return False
|
651 |
|
652 |
+
|
653 |
def get_logs_as_base64():
|
654 |
"""Read the Excel logs file and return as base64 for downloading."""
|
655 |
if not os.path.exists(EXCEL_LOG_PATH):
|
|
|
668 |
logger.error(f"Error reading Excel logs: {str(e)}")
|
669 |
return None
|
670 |
|
671 |
+
|
672 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
673 |
"""Analyze text using specified mode and return formatted results."""
|
674 |
# Check if the input text matches the admin password using secure comparison
|
|
|
788 |
overall_result
|
789 |
)
|
790 |
|
|
|
|
|
791 |
|
792 |
+
# Modified Gradio interface setup function to include file upload
|
793 |
+
def setup_gradio_interface(classifier):
|
794 |
+
"""
|
795 |
+
Set up Gradio interface with text input and file upload options
|
796 |
+
|
797 |
+
Args:
|
798 |
+
classifier: The TextClassifier instance
|
799 |
+
|
800 |
+
Returns:
|
801 |
+
Gradio Interface object
|
802 |
+
"""
|
803 |
+
import gradio as gr
|
804 |
+
|
805 |
+
with gr.Blocks(title="AI Text Detector") as demo:
|
806 |
+
gr.Markdown("# AI Text Detector with Document Upload")
|
807 |
+
gr.Markdown("Analyze text to detect if it was written by a human or AI. You can paste text directly or upload images, PDFs, or Word documents.")
|
808 |
+
|
809 |
+
with gr.Tab("Text Input"):
|
810 |
+
text_input = gr.Textbox(
|
811 |
+
lines=8,
|
812 |
+
placeholder="Enter text to analyze...",
|
813 |
+
label="Input Text"
|
814 |
+
)
|
815 |
+
|
816 |
+
mode_selection = gr.Radio(
|
817 |
+
choices=["quick", "detailed"],
|
818 |
+
value="quick",
|
819 |
+
label="Analysis Mode",
|
820 |
+
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
|
821 |
+
)
|
822 |
+
|
823 |
+
text_submit_button = gr.Button("Analyze Text")
|
824 |
+
|
825 |
+
output_html = gr.HTML(label="Highlighted Analysis")
|
826 |
+
output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
827 |
+
output_result = gr.Textbox(label="Overall Result", lines=4)
|
828 |
+
|
829 |
+
text_submit_button.click(
|
830 |
+
analyze_text,
|
831 |
+
inputs=[text_input, mode_selection, classifier],
|
832 |
+
outputs=[output_html, output_sentences, output_result]
|
833 |
+
)
|
834 |
+
|
835 |
+
with gr.Tab("File Upload"):
|
836 |
+
file_upload = gr.File(
|
837 |
+
label="Upload Document",
|
838 |
+
file_types=["image", "pdf", "doc", "docx"],
|
839 |
+
type="file"
|
840 |
+
)
|
841 |
+
|
842 |
+
file_mode_selection = gr.Radio(
|
843 |
+
choices=["quick", "detailed"],
|
844 |
+
value="quick",
|
845 |
+
label="Analysis Mode",
|
846 |
+
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
|
847 |
+
)
|
848 |
+
|
849 |
+
upload_submit_button = gr.Button("Process and Analyze")
|
850 |
+
|
851 |
+
file_output_html = gr.HTML(label="Highlighted Analysis")
|
852 |
+
file_output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
853 |
+
file_output_result = gr.Textbox(label="Overall Result", lines=4)
|
854 |
+
|
855 |
+
upload_submit_button.click(
|
856 |
+
handle_file_upload_and_analyze,
|
857 |
+
inputs=[file_upload, file_mode_selection, classifier],
|
858 |
+
outputs=[file_output_html, file_output_sentences, file_output_result]
|
859 |
+
)
|
860 |
+
|
861 |
+
gr.Markdown("""
|
862 |
+
### File Upload Limitations
|
863 |
+
- Maximum file size: 1MB
|
864 |
+
- PDF files: Maximum 3 pages (OCR.space API limitation)
|
865 |
+
- Supported formats: Images (PNG, JPG, GIF), PDF, Word documents (DOCX, DOC)
|
866 |
+
""")
|
867 |
+
|
868 |
+
return demo
|
869 |
|
870 |
|
871 |
+
# This function is a replacement for the original main app setup
|
872 |
+
def setup_app_with_ocr():
|
873 |
+
"""
|
874 |
+
Setup the application with OCR capabilities
|
875 |
+
"""
|
876 |
+
# Initialize the classifier (uses the fixed class)
|
877 |
+
classifier = TextClassifier()
|
878 |
+
|
879 |
+
# Create the Gradio interface with file upload functionality
|
880 |
+
demo = setup_gradio_interface(classifier)
|
881 |
+
|
882 |
+
# Get the FastAPI app from Gradio
|
883 |
+
app = demo.app
|
884 |
+
|
885 |
+
# Add CORS middleware (same as original code)
|
886 |
+
from fastapi.middleware.cors import CORSMiddleware
|
887 |
+
app.add_middleware(
|
888 |
+
CORSMiddleware,
|
889 |
+
allow_origins=["*"], # For development
|
890 |
+
allow_credentials=True,
|
891 |
+
allow_methods=["GET", "POST", "OPTIONS"],
|
892 |
+
allow_headers=["*"],
|
893 |
+
)
|
894 |
+
|
895 |
+
# Return the demo for launching
|
896 |
+
return demo
|
897 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
898 |
|
899 |
+
# Initialize the application
|
900 |
if __name__ == "__main__":
|
901 |
+
# Create the app with OCR functionality
|
902 |
+
demo = setup_app_with_ocr()
|
903 |
+
|
904 |
+
# Start the server
|
905 |
demo.queue()
|
906 |
demo.launch(
|
907 |
server_name="0.0.0.0",
|