Update app.py
Browse files
app.py
CHANGED
@@ -41,6 +41,336 @@ if not ADMIN_PASSWORD_HASH:
|
|
41 |
# Excel file path for logs
|
42 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def is_admin_password(input_text: str) -> bool:
|
45 |
"""
|
46 |
Check if the input text matches the admin password using secure hash comparison.
|
@@ -564,31 +894,8 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
564 |
classifier = TextClassifier()
|
565 |
|
566 |
# Create Gradio interface
|
567 |
-
demo =
|
568 |
-
|
569 |
-
inputs=[
|
570 |
-
gr.Textbox(
|
571 |
-
lines=8,
|
572 |
-
placeholder="Enter text to analyze...",
|
573 |
-
label="Input Text"
|
574 |
-
),
|
575 |
-
gr.Radio(
|
576 |
-
choices=["quick", "detailed"],
|
577 |
-
value="quick",
|
578 |
-
label="Analysis Mode",
|
579 |
-
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
|
580 |
-
)
|
581 |
-
],
|
582 |
-
outputs=[
|
583 |
-
gr.HTML(label="Highlighted Analysis"),
|
584 |
-
gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
|
585 |
-
gr.Textbox(label="Overall Result", lines=4)
|
586 |
-
],
|
587 |
-
title="AI Text Detector",
|
588 |
-
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
|
589 |
-
api_name="predict",
|
590 |
-
flagging_mode="never"
|
591 |
-
)
|
592 |
|
593 |
# Get the FastAPI app from Gradio
|
594 |
app = demo.app
|
|
|
41 |
# Excel file path for logs
|
42 |
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
|
43 |
|
44 |
+
|
45 |
+
import requests
|
46 |
+
import base64
|
47 |
+
import os
|
48 |
+
import tempfile
|
49 |
+
from typing import Dict, List, Optional, Union, Tuple
|
50 |
+
import mimetypes
|
51 |
+
import logging
|
52 |
+
import time
|
53 |
+
from pathlib import Path
|
54 |
+
|
55 |
+
# OCR API settings
|
56 |
+
OCR_API_KEY = "9e11346f1288957" # This is a partial key - replace with the full one
|
57 |
+
OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
|
58 |
+
OCR_MAX_PDF_PAGES = 3
|
59 |
+
OCR_MAX_FILE_SIZE_MB = 1
|
60 |
+
|
61 |
+
# Configure logging for OCR module
|
62 |
+
ocr_logger = logging.getLogger("ocr_module")
|
63 |
+
ocr_logger.setLevel(logging.INFO)
|
64 |
+
|
65 |
+
class OCRProcessor:
|
66 |
+
"""
|
67 |
+
Handles OCR processing of image and document files using OCR.space API
|
68 |
+
"""
|
69 |
+
def __init__(self, api_key: str = OCR_API_KEY):
|
70 |
+
self.api_key = api_key
|
71 |
+
self.endpoint = OCR_API_ENDPOINT
|
72 |
+
|
73 |
+
def process_file(self, file_path: str) -> Dict:
|
74 |
+
"""
|
75 |
+
Process a file using OCR.space API
|
76 |
+
|
77 |
+
Args:
|
78 |
+
file_path: Path to the file to be processed
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
Dictionary containing the OCR results and status
|
82 |
+
"""
|
83 |
+
start_time = time.time()
|
84 |
+
ocr_logger.info(f"Starting OCR processing for file: {os.path.basename(file_path)}")
|
85 |
+
|
86 |
+
# Validate file size
|
87 |
+
file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
|
88 |
+
if file_size_mb > OCR_MAX_FILE_SIZE_MB:
|
89 |
+
ocr_logger.warning(f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB")
|
90 |
+
return {
|
91 |
+
"success": False,
|
92 |
+
"error": f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB",
|
93 |
+
"text": ""
|
94 |
+
}
|
95 |
+
|
96 |
+
# Determine file type and handle accordingly
|
97 |
+
file_type = self._get_file_type(file_path)
|
98 |
+
ocr_logger.info(f"Detected file type: {file_type}")
|
99 |
+
|
100 |
+
# Special handling for Word documents - convert to PDF if needed
|
101 |
+
if file_type.startswith('application/vnd.openxmlformats-officedocument') or file_type == 'application/msword':
|
102 |
+
ocr_logger.info("Word document detected, processing directly")
|
103 |
+
# Note: OCR.space may handle Word directly, but if not, conversion would be needed here
|
104 |
+
|
105 |
+
# Prepare the API request
|
106 |
+
with open(file_path, 'rb') as f:
|
107 |
+
file_data = f.read()
|
108 |
+
|
109 |
+
# Set up API parameters
|
110 |
+
payload = {
|
111 |
+
'isOverlayRequired': 'false',
|
112 |
+
'language': 'eng',
|
113 |
+
'OCREngine': '2', # Use more accurate engine
|
114 |
+
'scale': 'true',
|
115 |
+
'detectOrientation': 'true',
|
116 |
+
}
|
117 |
+
|
118 |
+
# For PDF files, check page count limitations
|
119 |
+
if file_type == 'application/pdf':
|
120 |
+
ocr_logger.info("PDF document detected, enforcing page limit")
|
121 |
+
payload['filetype'] = 'PDF'
|
122 |
+
|
123 |
+
# Prepare file for OCR API
|
124 |
+
files = {
|
125 |
+
'file': (os.path.basename(file_path), file_data, file_type)
|
126 |
+
}
|
127 |
+
|
128 |
+
headers = {
|
129 |
+
'apikey': self.api_key,
|
130 |
+
}
|
131 |
+
|
132 |
+
# Make the OCR API request
|
133 |
+
try:
|
134 |
+
ocr_logger.info("Sending request to OCR.space API")
|
135 |
+
response = requests.post(
|
136 |
+
self.endpoint,
|
137 |
+
files=files,
|
138 |
+
data=payload,
|
139 |
+
headers=headers
|
140 |
+
)
|
141 |
+
response.raise_for_status()
|
142 |
+
result = response.json()
|
143 |
+
|
144 |
+
# Process the OCR results
|
145 |
+
if result.get('OCRExitCode') in [1, 2]: # Success or partial success
|
146 |
+
extracted_text = self._extract_text_from_result(result)
|
147 |
+
processing_time = time.time() - start_time
|
148 |
+
ocr_logger.info(f"OCR processing completed in {processing_time:.2f} seconds")
|
149 |
+
|
150 |
+
return {
|
151 |
+
"success": True,
|
152 |
+
"text": extracted_text,
|
153 |
+
"word_count": len(extracted_text.split()),
|
154 |
+
"processing_time_ms": int(processing_time * 1000)
|
155 |
+
}
|
156 |
+
else:
|
157 |
+
ocr_logger.error(f"OCR API error: {result.get('ErrorMessage', 'Unknown error')}")
|
158 |
+
return {
|
159 |
+
"success": False,
|
160 |
+
"error": result.get('ErrorMessage', 'OCR processing failed'),
|
161 |
+
"text": ""
|
162 |
+
}
|
163 |
+
|
164 |
+
except requests.exceptions.RequestException as e:
|
165 |
+
ocr_logger.error(f"OCR API request failed: {str(e)}")
|
166 |
+
return {
|
167 |
+
"success": False,
|
168 |
+
"error": f"OCR API request failed: {str(e)}",
|
169 |
+
"text": ""
|
170 |
+
}
|
171 |
+
|
172 |
+
def _extract_text_from_result(self, result: Dict) -> str:
|
173 |
+
"""
|
174 |
+
Extract all text from the OCR API result
|
175 |
+
|
176 |
+
Args:
|
177 |
+
result: The OCR API response JSON
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
Extracted text as a single string
|
181 |
+
"""
|
182 |
+
extracted_text = ""
|
183 |
+
|
184 |
+
if 'ParsedResults' in result and result['ParsedResults']:
|
185 |
+
for parsed_result in result['ParsedResults']:
|
186 |
+
if parsed_result.get('ParsedText'):
|
187 |
+
extracted_text += parsed_result['ParsedText']
|
188 |
+
|
189 |
+
return extracted_text
|
190 |
+
|
191 |
+
def _get_file_type(self, file_path: str) -> str:
|
192 |
+
"""
|
193 |
+
Determine MIME type of a file
|
194 |
+
|
195 |
+
Args:
|
196 |
+
file_path: Path to the file
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
MIME type as string
|
200 |
+
"""
|
201 |
+
mime_type, _ = mimetypes.guess_type(file_path)
|
202 |
+
if mime_type is None:
|
203 |
+
# Default to binary if MIME type can't be determined
|
204 |
+
return 'application/octet-stream'
|
205 |
+
return mime_type
|
206 |
+
|
207 |
+
|
208 |
+
# Function to be integrated with the main application
|
209 |
+
def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
210 |
+
"""
|
211 |
+
Handle file upload, OCR processing, and text analysis
|
212 |
+
|
213 |
+
Args:
|
214 |
+
file_obj: Uploaded file object from Gradio
|
215 |
+
mode: Analysis mode (quick or detailed)
|
216 |
+
classifier: The TextClassifier instance
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
Analysis results as a tuple (same format as original analyze_text function)
|
220 |
+
"""
|
221 |
+
if file_obj is None:
|
222 |
+
return (
|
223 |
+
"No file uploaded",
|
224 |
+
"Please upload a file to analyze",
|
225 |
+
"No file uploaded for analysis"
|
226 |
+
)
|
227 |
+
|
228 |
+
# Create a temporary file
|
229 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=Path(file_obj.name).suffix) as temp_file:
|
230 |
+
temp_file_path = temp_file.name
|
231 |
+
# Write uploaded file to the temporary file
|
232 |
+
temp_file.write(file_obj.read())
|
233 |
+
|
234 |
+
try:
|
235 |
+
# Process the file with OCR
|
236 |
+
ocr_processor = OCRProcessor()
|
237 |
+
ocr_result = ocr_processor.process_file(temp_file_path)
|
238 |
+
|
239 |
+
if not ocr_result["success"]:
|
240 |
+
return (
|
241 |
+
"OCR Processing Error",
|
242 |
+
ocr_result["error"],
|
243 |
+
"Failed to extract text from the uploaded file"
|
244 |
+
)
|
245 |
+
|
246 |
+
# Get the extracted text
|
247 |
+
extracted_text = ocr_result["text"]
|
248 |
+
|
249 |
+
# If no text was extracted
|
250 |
+
if not extracted_text.strip():
|
251 |
+
return (
|
252 |
+
"No text extracted",
|
253 |
+
"The OCR process did not extract any text from the uploaded file.",
|
254 |
+
"No text was found in the uploaded file"
|
255 |
+
)
|
256 |
+
|
257 |
+
# Call the original text analysis function with the extracted text
|
258 |
+
return analyze_text(extracted_text, mode, classifier)
|
259 |
+
|
260 |
+
finally:
|
261 |
+
# Clean up the temporary file
|
262 |
+
if os.path.exists(temp_file_path):
|
263 |
+
os.remove(temp_file_path)
|
264 |
+
|
265 |
+
|
266 |
+
# Modified Gradio interface setup function to include file upload
|
267 |
+
def setup_gradio_interface(classifier):
|
268 |
+
"""
|
269 |
+
Set up Gradio interface with text input and file upload options
|
270 |
+
|
271 |
+
Args:
|
272 |
+
classifier: The TextClassifier instance
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
Gradio Interface object
|
276 |
+
"""
|
277 |
+
import gradio as gr
|
278 |
+
|
279 |
+
with gr.Blocks(title="AI Text Detector") as demo:
|
280 |
+
gr.Markdown("# AI Text Detector with Document Upload")
|
281 |
+
gr.Markdown("Analyze text to detect if it was written by a human or AI. You can paste text directly or upload images, PDFs, or Word documents.")
|
282 |
+
|
283 |
+
with gr.Tab("Text Input"):
|
284 |
+
text_input = gr.Textbox(
|
285 |
+
lines=8,
|
286 |
+
placeholder="Enter text to analyze...",
|
287 |
+
label="Input Text"
|
288 |
+
)
|
289 |
+
|
290 |
+
mode_selection = gr.Radio(
|
291 |
+
choices=["quick", "detailed"],
|
292 |
+
value="quick",
|
293 |
+
label="Analysis Mode",
|
294 |
+
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
|
295 |
+
)
|
296 |
+
|
297 |
+
text_submit_button = gr.Button("Analyze Text")
|
298 |
+
|
299 |
+
output_html = gr.HTML(label="Highlighted Analysis")
|
300 |
+
output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
301 |
+
output_result = gr.Textbox(label="Overall Result", lines=4)
|
302 |
+
|
303 |
+
text_submit_button.click(
|
304 |
+
analyze_text,
|
305 |
+
inputs=[text_input, mode_selection, classifier],
|
306 |
+
outputs=[output_html, output_sentences, output_result]
|
307 |
+
)
|
308 |
+
|
309 |
+
with gr.Tab("File Upload"):
|
310 |
+
file_upload = gr.File(
|
311 |
+
label="Upload Document",
|
312 |
+
file_types=["image", "pdf", "doc", "docx"],
|
313 |
+
type="file"
|
314 |
+
)
|
315 |
+
|
316 |
+
file_mode_selection = gr.Radio(
|
317 |
+
choices=["quick", "detailed"],
|
318 |
+
value="quick",
|
319 |
+
label="Analysis Mode",
|
320 |
+
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
|
321 |
+
)
|
322 |
+
|
323 |
+
upload_submit_button = gr.Button("Process and Analyze")
|
324 |
+
|
325 |
+
file_output_html = gr.HTML(label="Highlighted Analysis")
|
326 |
+
file_output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
327 |
+
file_output_result = gr.Textbox(label="Overall Result", lines=4)
|
328 |
+
|
329 |
+
upload_submit_button.click(
|
330 |
+
handle_file_upload_and_analyze,
|
331 |
+
inputs=[file_upload, file_mode_selection, classifier],
|
332 |
+
outputs=[file_output_html, file_output_sentences, file_output_result]
|
333 |
+
)
|
334 |
+
|
335 |
+
gr.Markdown("""
|
336 |
+
### File Upload Limitations
|
337 |
+
- Maximum file size: 1MB
|
338 |
+
- PDF files: Maximum 3 pages (OCR.space API limitation)
|
339 |
+
- Supported formats: Images (PNG, JPG, GIF), PDF, Word documents (DOCX, DOC)
|
340 |
+
""")
|
341 |
+
|
342 |
+
return demo
|
343 |
+
|
344 |
+
|
345 |
+
# This function is a replacement for the original main app setup
|
346 |
+
def setup_app_with_ocr():
|
347 |
+
"""
|
348 |
+
Setup the application with OCR capabilities
|
349 |
+
"""
|
350 |
+
# Initialize the classifier (use existing code)
|
351 |
+
classifier = TextClassifier()
|
352 |
+
|
353 |
+
# Create the Gradio interface with file upload functionality
|
354 |
+
demo = setup_gradio_interface(classifier)
|
355 |
+
|
356 |
+
# Get the FastAPI app from Gradio
|
357 |
+
app = demo.app
|
358 |
+
|
359 |
+
# Add CORS middleware (same as original code)
|
360 |
+
from fastapi.middleware.cors import CORSMiddleware
|
361 |
+
app.add_middleware(
|
362 |
+
CORSMiddleware,
|
363 |
+
allow_origins=["*"], # For development
|
364 |
+
allow_credentials=True,
|
365 |
+
allow_methods=["GET", "POST", "OPTIONS"],
|
366 |
+
allow_headers=["*"],
|
367 |
+
)
|
368 |
+
|
369 |
+
# Return the demo for launching
|
370 |
+
return demo
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
def is_admin_password(input_text: str) -> bool:
|
375 |
"""
|
376 |
Check if the input text matches the admin password using secure hash comparison.
|
|
|
894 |
classifier = TextClassifier()
|
895 |
|
896 |
# Create Gradio interface
|
897 |
+
demo = setup_app_with_ocr()
|
898 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
899 |
|
900 |
# Get the FastAPI app from Gradio
|
901 |
app = demo.app
|