File size: 23,672 Bytes
f60e836 eac6c90 f60e836 eac6c90 f60e836 eac6c90 59d7f5d eac6c90 59d7f5d eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 59d7f5d eac6c90 705d763 eac6c90 705d763 f60e836 705d763 f60e836 eac6c90 f60e836 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 f60e836 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 f60e836 705d763 f60e836 705d763 59d7f5d eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 f60e836 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 f60e836 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 f60e836 eac6c90 705d763 eac6c90 705d763 f60e836 eac6c90 705d763 f60e836 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 f60e836 705d763 eac6c90 705d763 eac6c90 705d763 f60e836 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 f60e836 705d763 f60e836 eac6c90 705d763 f60e836 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 f60e836 705d763 f60e836 eac6c90 705d763 f60e836 705d763 eac6c90 f60e836 eac6c90 705d763 f60e836 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 705d763 eac6c90 f60e836 eac6c90 f60e836 705d763 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
# app.py
# Image Upscale and Enhancement with Multiple Models
# By FebryEnsz
# SDK: Gradio
# Hosted on Hugging Face Spaces
import gradio as gr
import torch
import numpy as np
from PIL import Image, ImageEnhance
import cv2
import os
import sys
import subprocess
import time
from huggingface_hub import hf_hub_download
# Create cache directory for models
CACHE_DIR = os.path.join(os.path.expanduser("~"), ".cache", "image_enhancer")
os.makedirs(CACHE_DIR, exist_ok=True)
# Set up logging
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Install required packages at runtime for Hugging Face Spaces
def install_dependencies():
logger.info("Checking and installing dependencies...")
packages_to_install = [
"opencv-python",
"opencv-contrib-python", # For dnn_superres module
"numpy",
"pillow",
"torch torchvision torchaudio", # Let pip handle the specific wheels
"facexlib", # Dependency for GFPGAN
"basicsr", # Dependency for RealESRGAN/GFPGAN
"gfpgan",
"realesrgan",
"huggingface_hub" # Ensure hf_hub_download is available
]
# Use a standard index-url or let pip find the best one
# Forcing CPU might prevent GPU usage if available
# Let's try without forcing CPU first, Hugging Face Spaces often handles this.
# If you specifically need CPU only, you might re-add --index-url https://download.pytorch.org/whl/cpu
for package in packages_to_install:
try:
logger.info(f"Installing {package}")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
except Exception as e:
logger.warning(f"Error installing {package}: {str(e)}")
logger.info("Dependencies installation complete")
# Try to install dependencies on startup
try:
install_dependencies()
# Import libraries AFTER installation
import cv2
import torch
import numpy as np
from PIL import Image, ImageEnhance
from huggingface_hub import hf_hub_download
try:
from realesrgan import RealESRGAN
except ImportError:
logger.warning("RealESRGAN import failed after installation attempt.")
RealESRGAN = None # Set to None if import fails
try:
from gfpgan import GFPGANer
except ImportError:
logger.warning("GFPGANer import failed after installation attempt.")
GFPGANer = None # Set to None if import fails
time.sleep(2) # Give some time for packages to settle
except Exception as e:
logger.error(f"Failed to install dependencies or import libraries: {str(e)}")
# Check for GPU or CPU AFTER torch is potentially installed
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Dictionary of available models and their configuration
MODEL_OPTIONS = {
"OpenCV Super Resolution": {
"type": "upscale",
"method": "opencv",
"scale": 4
},
"Real-ESRGAN-x4": {
"repo_id": "xinntao/Real-ESRGAN",
"filename": "RealESRGAN_x4plus.pth",
"type": "upscale",
"method": "realesrgan",
"scale": 4
},
"GFPGAN (Face Enhancement)": {
"repo_id": "TencentARC/GFPGAN",
"filename": "GFPGANv1.4.pth",
"type": "face",
"method": "gfpgan",
"scale": 1 # GFPGAN is primarily for face restoration, upscaling is secondary/handled by bg_upsampler
},
"HDR Enhancement": {
"type": "hdr",
"method": "custom",
"scale": 1
}
}
# Cache for loaded models
model_cache = {}
# Function to load the selected model with robust fallbacks
def load_model(model_name):
global model_cache
# Return cached model if available
if model_name in model_cache:
logger.info(f"Using cached model: {model_name}")
return model_cache[model_name]
logger.info(f"Loading model: {model_name}")
config = MODEL_OPTIONS.get(model_name)
if not config:
return None, f"Model {model_name} not found in configuration"
model_type = config["type"]
try:
# OpenCV based models (always available as fallback if opencv-contrib is installed)
if config["method"] == "opencv":
logger.info("Loading OpenCV Super Resolution model")
try:
sr = cv2.dnn_superres.DnnSuperResImpl_create()
# Use EDSR as default model
model_path = hf_hub_download(
repo_id="eugenesiow/edsr",
filename="EDSR_x4.pb",
cache_dir=CACHE_DIR
)
sr.readModel(model_path)
sr.setModel("edsr", 4)
# Set backend to cuda if available
if torch.cuda.is_available():
sr.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
sr.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
model_cache[model_name] = (sr, model_type)
return sr, model_type
except Exception as e:
logger.error(f"Error loading OpenCV SR model: {str(e)}")
# Fallback to None if OpenCV SR fails
return None, f"Failed to load OpenCV SR model: {str(e)}"
# Real-ESRGAN models
elif config["method"] == "realesrgan":
if RealESRGAN is None:
logger.warning("RealESRGAN class not found, falling back to OpenCV SR.")
return load_model("OpenCV Super Resolution") # Fallback
try:
logger.info("Loading Real-ESRGAN model")
model_path = hf_hub_download(
repo_id=config["repo_id"],
filename=config["filename"],
cache_dir=CACHE_DIR
)
# Initialize RealESRGAN with the correct device
model = RealESRGAN(device, scale=config["scale"])
model.load_weights(model_path)
model_cache[model_name] = (model, model_type)
return model, model_type
except Exception as e:
logger.error(f"Error loading Real-ESRGAN model: {str(e)}")
logger.warning("Falling back to OpenCV Super Resolution")
return load_model("OpenCV Super Resolution") # Fallback
# GFPGAN for face enhancement
elif config["method"] == "gfpgan":
if GFPGANer is None:
logger.warning("GFPGANer class not found, falling back to OpenCV SR.")
return load_model("OpenCV Super Resolution") # Fallback
try:
logger.info("Loading GFPGAN model")
model_path = hf_hub_download(
repo_id=config["repo_id"],
filename=config["filename"],
cache_dir=CACHE_DIR
)
# GFPGANer initialization
# Note: If you want background upsampling with GFPGAN, you need to initialize bg_upsampler
# e.g., bg_upsampler=RealESRGANer(model_path='...', model_name='RealESRGAN_x4plus.pth', ...)
# For simplicity and focusing on face, bg_upsampler=None is used here.
face_enhancer = GFPGANer(
model_path=model_path,
upscale=config["scale"], # This upscale might be ignored if paste_back is True and no bg_upsampler
arch='clean', # Use 'clean' arch for GFPGANv1.4
channel_multiplier=2,
bg_upsampler=None # No background upsampling
)
model_cache[model_name] = (face_enhancer, model_type)
return face_enhancer, model_type
except Exception as e:
logger.error(f"Error loading GFPGAN model: {str(e)}")
logger.warning("Falling back to OpenCV Super Resolution")
return load_model("OpenCV Super Resolution") # Fallback
# HDR Enhancement (custom implementation)
elif config["method"] == "custom":
# No model to load for custom HDR
model_cache[model_name] = (None, model_type)
return None, model_type
else:
return None, f"Unknown model method: {config['method']}"
except Exception as e:
logger.error(f"Unexpected error during model loading for {model_name}: {str(e)}")
import traceback
traceback.print_exc()
# Always provide a fallback method if the desired one completely fails
if model_name != "OpenCV Super Resolution":
logger.info("Critical error loading model, falling back to OpenCV Super Resolution")
return load_model("OpenCV Super Resolution")
else:
# If OpenCV SR itself fails, something is fundamentally wrong
return None, f"Failed to load any model, including fallback: {str(e)}"
# Function to preprocess image for processing
def preprocess_image(image):
"""Convert PIL image to numpy array for processing"""
if image is None:
return None
if isinstance(image, Image.Image):
# Convert PIL image to numpy array
img = np.array(image)
else:
# Assume it's already a numpy array (e.g., from Gradio internal handling)
img = image
# Handle grayscale images by converting to RGB
if len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
# Handle RGBA images by removing alpha channel
if img.shape[2] == 4:
img = img[:, :, :3]
# Convert RGB to BGR for OpenCV processing
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img_bgr
# Function to postprocess image for display
def postprocess_image(img_bgr):
"""Convert processed BGR image back to RGB PIL image"""
if img_bgr is None:
return None
# Ensure image is uint8
if img_bgr.dtype != np.uint8:
# Ensure the range is correct before casting
img_bgr = np.clip(img_bgr, 0, 255)
img_bgr = img_bgr.astype(np.uint8)
# Convert BGR to RGB for PIL
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
return Image.fromarray(img_rgb)
# HDR enhancement function
def enhance_hdr(img_bgr, strength=1.0):
"""Custom HDR enhancement using OpenCV"""
# Convert BGR to RGB
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
# Convert to float32 for processing, range [0, 1]
img_float = img_rgb.astype(np.float32) / 255.0
# --- Exposure Fusion based approach (more robust) ---
try:
# Estimate camera response function (merge_mertens is more robust)
merge_mertens = cv2.createMergeMertens(contrast_weight=1.0, saturation_weight=1.0, exposure_weight=0.0)
# You'd ideally need multiple exposures for true HDR merge.
# Simulating this by generating slightly adjusted exposures might not be ideal.
# Let's use a simpler single-image tone mapping or CLAHE on different channels.
# Using CLAHE on L channel (from LAB) and potentially V channel (from HSV)
img_lab = cv2.cvtColor(img_float, cv2.COLOR_RGB2LAB)
l, a, b = cv2.split(img_lab)
# Apply CLAHE to L channel
# ClipLimit proportional to strength
clahe_l = cv2.createCLAHE(clipLimit=max(1.0, 5.0 * strength), tileGridSize=(8, 8))
# CLAHE works on uint8, so scale L channel
l_uint8 = np.clip(l * 255.0, 0, 255).astype(np.uint8)
l_enhanced_uint8 = clahe_l.apply(l_uint8)
l_enhanced = l_enhanced_uint8.astype(np.float32) / 255.0
# Blend original and enhanced L channel based on strength
l_final = l * (1 - strength) + l_enhanced * strength
# Merge LAB and convert back to RGB
img_lab_enhanced = cv2.merge([l_final, a, b])
img_rgb_enhanced = cv2.cvtColor(img_lab_enhanced, cv2.COLOR_LAB2RGB)
# --- Additional Enhancements (optional, based on strength) ---
# Vibrance/Saturation adjustment (HSV)
img_hsv = cv2.cvtColor(img_rgb_enhanced, cv2.COLOR_RGB2HSV)
h, s, v = cv2.split(img_hsv)
# Increase saturation, more for less saturated pixels
saturation_factor = 0.4 * strength # Adjust factor as needed
s_enhanced = np.clip(s + (s * saturation_factor * (1 - s)), 0, 1)
# Slight brightness adjustment
brightness_factor = 0.1 * strength
v_enhanced = np.clip(v + (v * brightness_factor), 0, 1)
# Merge HSV and convert back to RGB
img_rgb_enhanced_hsv = cv2.cvtColor(cv2.merge([h, s_enhanced, v_enhanced]), cv2.COLOR_HSV2RGB)
# --- Subtle Detail Enhancement (Unsharp Masking effect) ---
# Convert back to uint8 for blurring
img_uint8_detail = (np.clip(img_rgb_enhanced_hsv, 0, 1) * 255).astype(np.uint8)
blur = cv2.GaussianBlur(img_uint8_detail, (0, 0), 5) # Kernel size 5, sigma automatically calculated
# Convert blur back to float for calculation
blur_float = blur.astype(np.float32) / 255.0
detail = img_rgb_enhanced_hsv - blur_float
# Add detail back, scaled by strength
img_final_float = np.clip(img_rgb_enhanced_hsv + detail * (0.8 * strength), 0, 1)
# Convert back to BGR (uint8) for output
img_bgr_enhanced = (img_final_float * 255).astype(np.uint8)
img_bgr_enhanced = cv2.cvtColor(img_bgr_enhanced, cv2.COLOR_RGB2BGR)
return img_bgr_enhanced
except Exception as e:
logger.error(f"Error during HDR enhancement: {str(e)}")
# Return original image if enhancement fails
return img_bgr
# Main image enhancement function
def enhance_image(image, model_name, strength=1.0, denoise=0.0, sharpen=0.0):
"""Enhance image using selected model with additional processing options"""
if image is None:
return "Please upload an image.", None
try:
# Load model
model, model_info = load_model(model_name)
if isinstance(model_info, str) and model_info.startswith("Failed"):
# If loading fails, model is None, info is the error message
return model_info, None
model_type = model_info # model_info now holds the model type string
# Preprocess image
img_bgr = preprocess_image(image)
if img_bgr is None:
return "Failed to process image", None
# Apply denoising if requested
if denoise > 0:
logger.info(f"Applying denoising with strength {denoise}")
# Adjust h and hColor based on denoise slider
# Recommended range for h is 10 for color images (adjust based on noise level)
h_val = int(denoise * 20 + 10) # Map 0-1 slider to approx 10-30 h value
img_bgr = cv2.fastNlMeansDenoisingColored(
img_bgr, None,
h=h_val,
hColor=h_val,
templateWindowSize=7,
searchWindowSize=21
)
output_bgr = img_bgr # Initialize output with potentially denoised image
# Process based on model type
if model_type == "upscale":
if model is None:
return f"Upscaling model '{model_name}' is not loaded or available.", None
logger.info(f"Upscaling image with {model_name}")
if model_name == "OpenCV Super Resolution":
# OpenCV super resolution
output_bgr = model.upsample(img_bgr)
elif model_name == "Real-ESRGAN-x4":
# Real-ESRGAN upscaling
# Real-ESRGAN model object has a 'predict' method
output_bgr = model.predict(img_bgr)
# No else needed, as load_model should handle fallbacks
elif model_type == "face":
if model is None:
return f"Face enhancement model '{model_name}' is not loaded or available.", None
logger.info(f"Enhancing face with {model_name}")
if model_name == "GFPGAN (Face Enhancement)":
# GFPGAN model object has an 'enhance' method
try:
# GFPGAN returns (cropped_faces, restored_faces, restored_img)
# restored_img is the pasted-back result
_, _, output_bgr = model.enhance(
img_bgr,
has_aligned=False,
only_center_face=False,
paste_back=True
)
except Exception as e:
logger.error(f"Error enhancing face with GFPGAN: {str(e)}")
# If GFPGAN fails, don't just return, try basic upscaling or original
# For now, let's just log and return original or denoised image
output_bgr = img_bgr # Keep the denoised (or original) image
return f"Error applying GFPGAN: {str(e)}. Returning base image.", postprocess_image(output_bgr)
elif model_type == "hdr":
# HDR enhancement doesn't use an external model object, it's a function call
logger.info(f"Applying HDR enhancement with strength {strength}")
output_bgr = enhance_hdr(img_bgr, strength=strength)
else:
# Should not happen if MODEL_OPTIONS is correct
return f"Unknown model type for processing: {model_type}", None
# Apply sharpening if requested (apply to the output of the main process)
if sharpen > 0:
logger.info(f"Applying sharpening with strength {sharpen}")
# Simple unsharp mask effect
kernel = np.array([
[0, -1, 0],
[-1, 5, -1],
[0, -1, 0]
], np.float32)
# We can adjust the strength by blending original and sharpened, or using a kernel with varying center weight
# A simpler approach is blending:
sharpened_img = cv2.filter2D(output_bgr, -1, kernel)
# Blend original output and sharpened output
output_bgr = cv2.addWeighted(output_bgr, 1.0 - sharpen, sharpened_img, sharpen, 0)
# Post-process and return image
enhanced_image = postprocess_image(output_bgr)
return "Image enhanced successfully!", enhanced_image
except Exception as e:
logger.error(f"An error occurred during image processing: {str(e)}")
import traceback
traceback.print_exc()
# Attempt to return original image on error
if image is not None:
try:
original_img_pil = Image.fromarray(cv2.cvtColor(preprocess_image(image), cv2.COLOR_BGR2RGB))
return f"Processing failed: {str(e)}. Returning original image.", original_img_pil
except Exception as post_e:
logger.error(f"Failed to return original image after error: {str(post_e)}")
return f"Processing failed: {str(e)}. Could not return image.", None
else:
return f"Processing failed: {str(e)}. No image provided.", None
# Gradio interface
with gr.Blocks(title="Image Upscale & Enhancement - By FebryEnsz") as demo:
gr.Markdown(
"""
# 🖼️ Image Upscale & Enhancement
### By FebryEnsz
Upload an image and enhance it with AI-powered upscaling and enhancement.
**Features:**
- Super-resolution upscaling (4x) using Real-ESRGAN or OpenCV
- Face enhancement for portraits using GFPGAN
- HDR enhancement for better contrast and details
- Additional Denoise and Sharpen options
"""
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Upload Image", type="pil", image_mode="RGB") # Explicitly request RGB
# Changed gr.Box() to gr.Group()
with gr.Group(): # Replaced gr.Box()
gr.Markdown("### Enhancement Options")
model_choice = gr.Dropdown(
choices=list(MODEL_OPTIONS.keys()),
label="Model Selection",
value="OpenCV Super Resolution",
allow_flagging="never" # Optional: disable flagging
)
with gr.Accordion("Advanced Settings", open=False):
# Keep strength_slider visible but update label based on model
strength_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
step=0.05, # Added more steps for finer control
label="Enhancement Strength", # Default label
value=0.8,
visible=True # Ensure it's visible
)
denoise_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.05, # Added more steps
label="Noise Reduction Strength",
value=0.0,
)
sharpen_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.05, # Added more steps
label="Sharpening Strength",
value=0.0,
)
enhance_button = gr.Button("✨ Enhance Image", variant="primary")
with gr.Column(scale=1):
output_text = gr.Textbox(label="Status")
output_image = gr.Image(label="Enhanced Image", type="pil") # Specify type="pil" consistently
# Handle model change to update UI
# This function only needs to update the label of the strength slider
def on_model_change(model_name):
model_config = MODEL_OPTIONS.get(model_name, {})
model_type = model_config.get("type", "")
if model_type == "hdr":
return gr.update(label="HDR Intensity")
elif model_type == "face":
return gr.update(label="Face Enhancement Strength")
elif model_type == "upscale":
return gr.update(label="Enhancement Strength") # Keep a generic label for upscale
else:
return gr.update(label="Enhancement Strength") # Default
model_choice.change(on_model_change, inputs=[model_choice], outputs=[strength_slider])
# Connect button to function
enhance_button.click(
fn=enhance_image,
inputs=[image_input, model_choice, strength_slider, denoise_slider, sharpen_slider],
outputs=[output_text, output_image],
api_name="enhance" # Optional: give it an API name
)
# Footer information
gr.Markdown(
"""
### Tips
- For best results with face enhancement, ensure faces are clearly visible.
- HDR enhancement works best with images that have both bright and dark areas.
- For noisy images, try increasing the noise reduction slider.
- Sharpening can add detail but may also increase noise if applied too strongly.
---
Version 2.1 | Running on: """ + (f"GPU 🚀 ({torch.cuda.get_device_name(0)})" if torch.cuda.is_available() else "CPU ⚙️") + """
"""
)
# Launch the app
if __name__ == "__main__":
# Use share=True for a temporary public link (useful for debugging, but not needed for Spaces)
# Use enable_queue=True for better handling of concurrent requests on Spaces
demo.launch(enable_queue=True) |