Update app.py
Browse files
app.py
CHANGED
@@ -27,18 +27,24 @@ logger = logging.getLogger(__name__)
|
|
27 |
# Install required packages at runtime for Hugging Face Spaces
|
28 |
def install_dependencies():
|
29 |
logger.info("Checking and installing dependencies...")
|
30 |
-
|
31 |
packages_to_install = [
|
32 |
"opencv-python",
|
33 |
"opencv-contrib-python", # For dnn_superres module
|
34 |
"numpy",
|
35 |
"pillow",
|
36 |
-
"torch torchvision torchaudio
|
37 |
-
"facexlib",
|
38 |
-
"basicsr",
|
39 |
"gfpgan",
|
40 |
-
"realesrgan"
|
|
|
41 |
]
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
for package in packages_to_install:
|
44 |
try:
|
@@ -46,17 +52,34 @@ def install_dependencies():
|
|
46 |
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
47 |
except Exception as e:
|
48 |
logger.warning(f"Error installing {package}: {str(e)}")
|
49 |
-
|
50 |
logger.info("Dependencies installation complete")
|
51 |
|
52 |
# Try to install dependencies on startup
|
53 |
try:
|
54 |
install_dependencies()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
time.sleep(2) # Give some time for packages to settle
|
56 |
except Exception as e:
|
57 |
-
logger.error(f"Failed to install dependencies: {str(e)}")
|
58 |
|
59 |
-
# Check for GPU or CPU
|
60 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
61 |
logger.info(f"Using device: {device}")
|
62 |
|
@@ -79,7 +102,7 @@ MODEL_OPTIONS = {
|
|
79 |
"filename": "GFPGANv1.4.pth",
|
80 |
"type": "face",
|
81 |
"method": "gfpgan",
|
82 |
-
"scale": 1
|
83 |
},
|
84 |
"HDR Enhancement": {
|
85 |
"type": "hdr",
|
@@ -94,134 +117,156 @@ model_cache = {}
|
|
94 |
# Function to load the selected model with robust fallbacks
|
95 |
def load_model(model_name):
|
96 |
global model_cache
|
97 |
-
|
98 |
# Return cached model if available
|
99 |
if model_name in model_cache:
|
100 |
logger.info(f"Using cached model: {model_name}")
|
101 |
return model_cache[model_name]
|
102 |
-
|
103 |
logger.info(f"Loading model: {model_name}")
|
104 |
config = MODEL_OPTIONS.get(model_name)
|
105 |
if not config:
|
106 |
return None, f"Model {model_name} not found in configuration"
|
107 |
-
|
108 |
model_type = config["type"]
|
109 |
-
|
110 |
try:
|
111 |
-
# OpenCV based models (always available as fallback)
|
112 |
if config["method"] == "opencv":
|
113 |
logger.info("Loading OpenCV Super Resolution model")
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
# Real-ESRGAN models
|
135 |
elif config["method"] == "realesrgan":
|
|
|
|
|
|
|
|
|
136 |
try:
|
137 |
-
from realesrgan import RealESRGAN
|
138 |
logger.info("Loading Real-ESRGAN model")
|
139 |
-
|
140 |
model_path = hf_hub_download(
|
141 |
repo_id=config["repo_id"],
|
142 |
filename=config["filename"],
|
143 |
cache_dir=CACHE_DIR
|
144 |
)
|
145 |
-
|
|
|
146 |
model = RealESRGAN(device, scale=config["scale"])
|
147 |
model.load_weights(model_path)
|
148 |
-
|
149 |
model_cache[model_name] = (model, model_type)
|
150 |
return model, model_type
|
151 |
-
except
|
152 |
-
logger.
|
153 |
-
|
154 |
-
|
|
|
155 |
# GFPGAN for face enhancement
|
156 |
elif config["method"] == "gfpgan":
|
|
|
|
|
|
|
|
|
157 |
try:
|
158 |
-
from gfpgan import GFPGANer
|
159 |
logger.info("Loading GFPGAN model")
|
160 |
-
|
161 |
model_path = hf_hub_download(
|
162 |
repo_id=config["repo_id"],
|
163 |
filename=config["filename"],
|
164 |
cache_dir=CACHE_DIR
|
165 |
)
|
166 |
-
|
|
|
|
|
|
|
|
|
167 |
face_enhancer = GFPGANer(
|
168 |
model_path=model_path,
|
169 |
-
upscale=config["scale"],
|
170 |
-
arch='clean',
|
171 |
channel_multiplier=2,
|
172 |
-
bg_upsampler=None
|
173 |
)
|
174 |
-
|
175 |
model_cache[model_name] = (face_enhancer, model_type)
|
176 |
return face_enhancer, model_type
|
177 |
-
except
|
178 |
-
logger.
|
179 |
-
|
180 |
-
|
|
|
181 |
# HDR Enhancement (custom implementation)
|
182 |
elif config["method"] == "custom":
|
183 |
# No model to load for custom HDR
|
184 |
model_cache[model_name] = (None, model_type)
|
185 |
return None, model_type
|
186 |
-
|
187 |
else:
|
188 |
-
|
189 |
-
|
190 |
except Exception as e:
|
191 |
-
logger.error(f"
|
192 |
import traceback
|
193 |
traceback.print_exc()
|
194 |
-
|
195 |
-
# Always provide a fallback method
|
196 |
if model_name != "OpenCV Super Resolution":
|
197 |
-
logger.info("
|
198 |
return load_model("OpenCV Super Resolution")
|
199 |
else:
|
200 |
-
|
|
|
|
|
201 |
|
202 |
# Function to preprocess image for processing
|
203 |
def preprocess_image(image):
|
204 |
"""Convert PIL image to numpy array for processing"""
|
205 |
if image is None:
|
206 |
return None
|
207 |
-
|
208 |
if isinstance(image, Image.Image):
|
209 |
# Convert PIL image to numpy array
|
210 |
img = np.array(image)
|
211 |
else:
|
|
|
212 |
img = image
|
213 |
-
|
214 |
# Handle grayscale images by converting to RGB
|
215 |
if len(img.shape) == 2:
|
216 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
217 |
-
|
218 |
# Handle RGBA images by removing alpha channel
|
219 |
if img.shape[2] == 4:
|
220 |
img = img[:, :, :3]
|
221 |
-
|
222 |
# Convert RGB to BGR for OpenCV processing
|
223 |
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
224 |
-
|
225 |
return img_bgr
|
226 |
|
227 |
# Function to postprocess image for display
|
@@ -229,14 +274,16 @@ def postprocess_image(img_bgr):
|
|
229 |
"""Convert processed BGR image back to RGB PIL image"""
|
230 |
if img_bgr is None:
|
231 |
return None
|
232 |
-
|
233 |
# Ensure image is uint8
|
234 |
if img_bgr.dtype != np.uint8:
|
235 |
-
|
236 |
-
|
|
|
|
|
237 |
# Convert BGR to RGB for PIL
|
238 |
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
239 |
-
|
240 |
return Image.fromarray(img_rgb)
|
241 |
|
242 |
# HDR enhancement function
|
@@ -244,152 +291,199 @@ def enhance_hdr(img_bgr, strength=1.0):
|
|
244 |
"""Custom HDR enhancement using OpenCV"""
|
245 |
# Convert BGR to RGB
|
246 |
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
247 |
-
|
248 |
-
# Convert to float32 for processing
|
249 |
img_float = img_rgb.astype(np.float32) / 255.0
|
250 |
-
|
251 |
-
#
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
# Main image enhancement function
|
294 |
def enhance_image(image, model_name, strength=1.0, denoise=0.0, sharpen=0.0):
|
295 |
"""Enhance image using selected model with additional processing options"""
|
296 |
if image is None:
|
297 |
return "Please upload an image.", None
|
298 |
-
|
299 |
try:
|
300 |
# Load model
|
301 |
-
model,
|
302 |
-
if isinstance(
|
303 |
-
|
304 |
-
|
|
|
|
|
|
|
305 |
# Preprocess image
|
306 |
img_bgr = preprocess_image(image)
|
307 |
if img_bgr is None:
|
308 |
return "Failed to process image", None
|
309 |
-
|
310 |
# Apply denoising if requested
|
311 |
if denoise > 0:
|
312 |
-
|
|
|
|
|
|
|
313 |
img_bgr = cv2.fastNlMeansDenoisingColored(
|
314 |
-
img_bgr, None,
|
315 |
-
h=
|
316 |
-
hColor=
|
317 |
-
templateWindowSize=7,
|
318 |
searchWindowSize=21
|
319 |
)
|
320 |
-
|
|
|
|
|
321 |
# Process based on model type
|
322 |
if model_type == "upscale":
|
|
|
|
|
323 |
logger.info(f"Upscaling image with {model_name}")
|
324 |
|
325 |
if model_name == "OpenCV Super Resolution":
|
326 |
# OpenCV super resolution
|
327 |
output_bgr = model.upsample(img_bgr)
|
328 |
-
|
329 |
elif model_name == "Real-ESRGAN-x4":
|
330 |
# Real-ESRGAN upscaling
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
fallback_model, _ = load_model("OpenCV Super Resolution")
|
337 |
-
output_bgr = fallback_model.upsample(img_bgr)
|
338 |
-
|
339 |
-
else:
|
340 |
-
# Default to OpenCV upscaling
|
341 |
-
sr = cv2.dnn_superres.DnnSuperResImpl_create()
|
342 |
-
sr.upsample(img_bgr)
|
343 |
-
|
344 |
elif model_type == "face":
|
|
|
|
|
345 |
logger.info(f"Enhancing face with {model_name}")
|
346 |
-
|
347 |
if model_name == "GFPGAN (Face Enhancement)":
|
|
|
348 |
try:
|
349 |
# GFPGAN returns (cropped_faces, restored_faces, restored_img)
|
|
|
350 |
_, _, output_bgr = model.enhance(
|
351 |
-
img_bgr,
|
352 |
-
has_aligned=False,
|
353 |
-
only_center_face=False,
|
354 |
paste_back=True
|
355 |
)
|
356 |
except Exception as e:
|
357 |
-
logger.error(f"Error with GFPGAN: {str(e)}")
|
358 |
-
#
|
359 |
-
|
360 |
-
output_bgr =
|
361 |
-
|
362 |
-
|
363 |
-
sr = cv2.dnn_superres.DnnSuperResImpl_create()
|
364 |
-
output_bgr = sr.upsample(img_bgr)
|
365 |
-
|
366 |
elif model_type == "hdr":
|
367 |
-
|
368 |
-
|
369 |
output_bgr = enhance_hdr(img_bgr, strength=strength)
|
370 |
-
|
371 |
else:
|
372 |
-
|
373 |
-
|
374 |
-
|
|
|
|
|
375 |
if sharpen > 0:
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
[
|
380 |
-
|
381 |
-
|
382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
# Post-process and return image
|
384 |
enhanced_image = postprocess_image(output_bgr)
|
385 |
-
|
386 |
return "Image enhanced successfully!", enhanced_image
|
387 |
-
|
388 |
except Exception as e:
|
389 |
-
logger.error(f"
|
390 |
import traceback
|
391 |
traceback.print_exc()
|
392 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
|
394 |
# Gradio interface
|
395 |
with gr.Blocks(title="Image Upscale & Enhancement - By FebryEnsz") as demo:
|
@@ -397,93 +491,105 @@ with gr.Blocks(title="Image Upscale & Enhancement - By FebryEnsz") as demo:
|
|
397 |
"""
|
398 |
# 🖼️ Image Upscale & Enhancement
|
399 |
### By FebryEnsz
|
400 |
-
|
401 |
Upload an image and enhance it with AI-powered upscaling and enhancement.
|
402 |
-
|
403 |
**Features:**
|
404 |
-
- Super-resolution upscaling (4x)
|
405 |
-
- Face enhancement for portraits
|
406 |
- HDR enhancement for better contrast and details
|
|
|
407 |
"""
|
408 |
)
|
409 |
-
|
410 |
with gr.Row():
|
411 |
with gr.Column(scale=1):
|
412 |
-
image_input = gr.Image(label="Upload Image", type="pil")
|
413 |
|
414 |
-
|
|
|
415 |
gr.Markdown("### Enhancement Options")
|
416 |
model_choice = gr.Dropdown(
|
417 |
choices=list(MODEL_OPTIONS.keys()),
|
418 |
label="Model Selection",
|
419 |
-
value="OpenCV Super Resolution"
|
|
|
420 |
)
|
421 |
-
|
422 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
423 |
strength_slider = gr.Slider(
|
424 |
minimum=0.1,
|
425 |
maximum=1.0,
|
426 |
-
step=0.
|
427 |
-
label="Enhancement Strength",
|
428 |
value=0.8,
|
|
|
429 |
)
|
430 |
-
|
431 |
denoise_slider = gr.Slider(
|
432 |
minimum=0.0,
|
433 |
maximum=1.0,
|
434 |
-
step=0.
|
435 |
-
label="Noise Reduction",
|
436 |
value=0.0,
|
437 |
)
|
438 |
-
|
439 |
sharpen_slider = gr.Slider(
|
440 |
minimum=0.0,
|
441 |
maximum=1.0,
|
442 |
-
step=0.
|
443 |
-
label="Sharpening",
|
444 |
value=0.0,
|
445 |
)
|
446 |
-
|
447 |
enhance_button = gr.Button("✨ Enhance Image", variant="primary")
|
448 |
-
|
449 |
with gr.Column(scale=1):
|
450 |
output_text = gr.Textbox(label="Status")
|
451 |
-
output_image = gr.Image(label="Enhanced Image")
|
452 |
-
|
453 |
# Handle model change to update UI
|
|
|
454 |
def on_model_change(model_name):
|
455 |
model_config = MODEL_OPTIONS.get(model_name, {})
|
456 |
model_type = model_config.get("type", "")
|
457 |
-
|
458 |
-
# Update UI based on model type
|
459 |
if model_type == "hdr":
|
460 |
-
return gr.update(
|
461 |
elif model_type == "face":
|
462 |
-
|
|
|
|
|
463 |
else:
|
464 |
-
|
465 |
-
|
466 |
model_choice.change(on_model_change, inputs=[model_choice], outputs=[strength_slider])
|
467 |
-
|
468 |
# Connect button to function
|
469 |
enhance_button.click(
|
470 |
fn=enhance_image,
|
471 |
inputs=[image_input, model_choice, strength_slider, denoise_slider, sharpen_slider],
|
472 |
-
outputs=[output_text, output_image]
|
|
|
473 |
)
|
474 |
-
|
475 |
# Footer information
|
476 |
gr.Markdown(
|
477 |
"""
|
478 |
### Tips
|
479 |
-
- For best results with face enhancement, ensure faces are clearly visible
|
480 |
-
- HDR enhancement works best with images that have both bright and dark areas
|
481 |
-
- For noisy images, try increasing the noise reduction slider
|
482 |
-
|
|
|
483 |
---
|
484 |
-
Version 2.
|
|
|
485 |
)
|
486 |
|
487 |
# Launch the app
|
488 |
if __name__ == "__main__":
|
489 |
-
|
|
|
|
|
|
27 |
# Install required packages at runtime for Hugging Face Spaces
|
28 |
def install_dependencies():
|
29 |
logger.info("Checking and installing dependencies...")
|
30 |
+
|
31 |
packages_to_install = [
|
32 |
"opencv-python",
|
33 |
"opencv-contrib-python", # For dnn_superres module
|
34 |
"numpy",
|
35 |
"pillow",
|
36 |
+
"torch torchvision torchaudio", # Let pip handle the specific wheels
|
37 |
+
"facexlib", # Dependency for GFPGAN
|
38 |
+
"basicsr", # Dependency for RealESRGAN/GFPGAN
|
39 |
"gfpgan",
|
40 |
+
"realesrgan",
|
41 |
+
"huggingface_hub" # Ensure hf_hub_download is available
|
42 |
]
|
43 |
+
|
44 |
+
# Use a standard index-url or let pip find the best one
|
45 |
+
# Forcing CPU might prevent GPU usage if available
|
46 |
+
# Let's try without forcing CPU first, Hugging Face Spaces often handles this.
|
47 |
+
# If you specifically need CPU only, you might re-add --index-url https://download.pytorch.org/whl/cpu
|
48 |
|
49 |
for package in packages_to_install:
|
50 |
try:
|
|
|
52 |
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
53 |
except Exception as e:
|
54 |
logger.warning(f"Error installing {package}: {str(e)}")
|
55 |
+
|
56 |
logger.info("Dependencies installation complete")
|
57 |
|
58 |
# Try to install dependencies on startup
|
59 |
try:
|
60 |
install_dependencies()
|
61 |
+
# Import libraries AFTER installation
|
62 |
+
import cv2
|
63 |
+
import torch
|
64 |
+
import numpy as np
|
65 |
+
from PIL import Image, ImageEnhance
|
66 |
+
from huggingface_hub import hf_hub_download
|
67 |
+
try:
|
68 |
+
from realesrgan import RealESRGAN
|
69 |
+
except ImportError:
|
70 |
+
logger.warning("RealESRGAN import failed after installation attempt.")
|
71 |
+
RealESRGAN = None # Set to None if import fails
|
72 |
+
try:
|
73 |
+
from gfpgan import GFPGANer
|
74 |
+
except ImportError:
|
75 |
+
logger.warning("GFPGANer import failed after installation attempt.")
|
76 |
+
GFPGANer = None # Set to None if import fails
|
77 |
+
|
78 |
time.sleep(2) # Give some time for packages to settle
|
79 |
except Exception as e:
|
80 |
+
logger.error(f"Failed to install dependencies or import libraries: {str(e)}")
|
81 |
|
82 |
+
# Check for GPU or CPU AFTER torch is potentially installed
|
83 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
84 |
logger.info(f"Using device: {device}")
|
85 |
|
|
|
102 |
"filename": "GFPGANv1.4.pth",
|
103 |
"type": "face",
|
104 |
"method": "gfpgan",
|
105 |
+
"scale": 1 # GFPGAN is primarily for face restoration, upscaling is secondary/handled by bg_upsampler
|
106 |
},
|
107 |
"HDR Enhancement": {
|
108 |
"type": "hdr",
|
|
|
117 |
# Function to load the selected model with robust fallbacks
|
118 |
def load_model(model_name):
|
119 |
global model_cache
|
120 |
+
|
121 |
# Return cached model if available
|
122 |
if model_name in model_cache:
|
123 |
logger.info(f"Using cached model: {model_name}")
|
124 |
return model_cache[model_name]
|
125 |
+
|
126 |
logger.info(f"Loading model: {model_name}")
|
127 |
config = MODEL_OPTIONS.get(model_name)
|
128 |
if not config:
|
129 |
return None, f"Model {model_name} not found in configuration"
|
130 |
+
|
131 |
model_type = config["type"]
|
132 |
+
|
133 |
try:
|
134 |
+
# OpenCV based models (always available as fallback if opencv-contrib is installed)
|
135 |
if config["method"] == "opencv":
|
136 |
logger.info("Loading OpenCV Super Resolution model")
|
137 |
+
try:
|
138 |
+
sr = cv2.dnn_superres.DnnSuperResImpl_create()
|
139 |
+
|
140 |
+
# Use EDSR as default model
|
141 |
+
model_path = hf_hub_download(
|
142 |
+
repo_id="eugenesiow/edsr",
|
143 |
+
filename="EDSR_x4.pb",
|
144 |
+
cache_dir=CACHE_DIR
|
145 |
+
)
|
146 |
+
|
147 |
+
sr.readModel(model_path)
|
148 |
+
sr.setModel("edsr", 4)
|
149 |
+
|
150 |
+
# Set backend to cuda if available
|
151 |
+
if torch.cuda.is_available():
|
152 |
+
sr.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
|
153 |
+
sr.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
|
154 |
+
|
155 |
+
model_cache[model_name] = (sr, model_type)
|
156 |
+
return sr, model_type
|
157 |
+
except Exception as e:
|
158 |
+
logger.error(f"Error loading OpenCV SR model: {str(e)}")
|
159 |
+
# Fallback to None if OpenCV SR fails
|
160 |
+
return None, f"Failed to load OpenCV SR model: {str(e)}"
|
161 |
+
|
162 |
+
|
163 |
# Real-ESRGAN models
|
164 |
elif config["method"] == "realesrgan":
|
165 |
+
if RealESRGAN is None:
|
166 |
+
logger.warning("RealESRGAN class not found, falling back to OpenCV SR.")
|
167 |
+
return load_model("OpenCV Super Resolution") # Fallback
|
168 |
+
|
169 |
try:
|
|
|
170 |
logger.info("Loading Real-ESRGAN model")
|
171 |
+
|
172 |
model_path = hf_hub_download(
|
173 |
repo_id=config["repo_id"],
|
174 |
filename=config["filename"],
|
175 |
cache_dir=CACHE_DIR
|
176 |
)
|
177 |
+
|
178 |
+
# Initialize RealESRGAN with the correct device
|
179 |
model = RealESRGAN(device, scale=config["scale"])
|
180 |
model.load_weights(model_path)
|
181 |
+
|
182 |
model_cache[model_name] = (model, model_type)
|
183 |
return model, model_type
|
184 |
+
except Exception as e:
|
185 |
+
logger.error(f"Error loading Real-ESRGAN model: {str(e)}")
|
186 |
+
logger.warning("Falling back to OpenCV Super Resolution")
|
187 |
+
return load_model("OpenCV Super Resolution") # Fallback
|
188 |
+
|
189 |
# GFPGAN for face enhancement
|
190 |
elif config["method"] == "gfpgan":
|
191 |
+
if GFPGANer is None:
|
192 |
+
logger.warning("GFPGANer class not found, falling back to OpenCV SR.")
|
193 |
+
return load_model("OpenCV Super Resolution") # Fallback
|
194 |
+
|
195 |
try:
|
|
|
196 |
logger.info("Loading GFPGAN model")
|
197 |
+
|
198 |
model_path = hf_hub_download(
|
199 |
repo_id=config["repo_id"],
|
200 |
filename=config["filename"],
|
201 |
cache_dir=CACHE_DIR
|
202 |
)
|
203 |
+
|
204 |
+
# GFPGANer initialization
|
205 |
+
# Note: If you want background upsampling with GFPGAN, you need to initialize bg_upsampler
|
206 |
+
# e.g., bg_upsampler=RealESRGANer(model_path='...', model_name='RealESRGAN_x4plus.pth', ...)
|
207 |
+
# For simplicity and focusing on face, bg_upsampler=None is used here.
|
208 |
face_enhancer = GFPGANer(
|
209 |
model_path=model_path,
|
210 |
+
upscale=config["scale"], # This upscale might be ignored if paste_back is True and no bg_upsampler
|
211 |
+
arch='clean', # Use 'clean' arch for GFPGANv1.4
|
212 |
channel_multiplier=2,
|
213 |
+
bg_upsampler=None # No background upsampling
|
214 |
)
|
215 |
+
|
216 |
model_cache[model_name] = (face_enhancer, model_type)
|
217 |
return face_enhancer, model_type
|
218 |
+
except Exception as e:
|
219 |
+
logger.error(f"Error loading GFPGAN model: {str(e)}")
|
220 |
+
logger.warning("Falling back to OpenCV Super Resolution")
|
221 |
+
return load_model("OpenCV Super Resolution") # Fallback
|
222 |
+
|
223 |
# HDR Enhancement (custom implementation)
|
224 |
elif config["method"] == "custom":
|
225 |
# No model to load for custom HDR
|
226 |
model_cache[model_name] = (None, model_type)
|
227 |
return None, model_type
|
228 |
+
|
229 |
else:
|
230 |
+
return None, f"Unknown model method: {config['method']}"
|
231 |
+
|
232 |
except Exception as e:
|
233 |
+
logger.error(f"Unexpected error during model loading for {model_name}: {str(e)}")
|
234 |
import traceback
|
235 |
traceback.print_exc()
|
236 |
+
|
237 |
+
# Always provide a fallback method if the desired one completely fails
|
238 |
if model_name != "OpenCV Super Resolution":
|
239 |
+
logger.info("Critical error loading model, falling back to OpenCV Super Resolution")
|
240 |
return load_model("OpenCV Super Resolution")
|
241 |
else:
|
242 |
+
# If OpenCV SR itself fails, something is fundamentally wrong
|
243 |
+
return None, f"Failed to load any model, including fallback: {str(e)}"
|
244 |
+
|
245 |
|
246 |
# Function to preprocess image for processing
|
247 |
def preprocess_image(image):
|
248 |
"""Convert PIL image to numpy array for processing"""
|
249 |
if image is None:
|
250 |
return None
|
251 |
+
|
252 |
if isinstance(image, Image.Image):
|
253 |
# Convert PIL image to numpy array
|
254 |
img = np.array(image)
|
255 |
else:
|
256 |
+
# Assume it's already a numpy array (e.g., from Gradio internal handling)
|
257 |
img = image
|
258 |
+
|
259 |
# Handle grayscale images by converting to RGB
|
260 |
if len(img.shape) == 2:
|
261 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
262 |
+
|
263 |
# Handle RGBA images by removing alpha channel
|
264 |
if img.shape[2] == 4:
|
265 |
img = img[:, :, :3]
|
266 |
+
|
267 |
# Convert RGB to BGR for OpenCV processing
|
268 |
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
269 |
+
|
270 |
return img_bgr
|
271 |
|
272 |
# Function to postprocess image for display
|
|
|
274 |
"""Convert processed BGR image back to RGB PIL image"""
|
275 |
if img_bgr is None:
|
276 |
return None
|
277 |
+
|
278 |
# Ensure image is uint8
|
279 |
if img_bgr.dtype != np.uint8:
|
280 |
+
# Ensure the range is correct before casting
|
281 |
+
img_bgr = np.clip(img_bgr, 0, 255)
|
282 |
+
img_bgr = img_bgr.astype(np.uint8)
|
283 |
+
|
284 |
# Convert BGR to RGB for PIL
|
285 |
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
286 |
+
|
287 |
return Image.fromarray(img_rgb)
|
288 |
|
289 |
# HDR enhancement function
|
|
|
291 |
"""Custom HDR enhancement using OpenCV"""
|
292 |
# Convert BGR to RGB
|
293 |
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
294 |
+
|
295 |
+
# Convert to float32 for processing, range [0, 1]
|
296 |
img_float = img_rgb.astype(np.float32) / 255.0
|
297 |
+
|
298 |
+
# --- Exposure Fusion based approach (more robust) ---
|
299 |
+
try:
|
300 |
+
# Estimate camera response function (merge_mertens is more robust)
|
301 |
+
merge_mertens = cv2.createMergeMertens(contrast_weight=1.0, saturation_weight=1.0, exposure_weight=0.0)
|
302 |
+
# You'd ideally need multiple exposures for true HDR merge.
|
303 |
+
# Simulating this by generating slightly adjusted exposures might not be ideal.
|
304 |
+
# Let's use a simpler single-image tone mapping or CLAHE on different channels.
|
305 |
+
|
306 |
+
# Using CLAHE on L channel (from LAB) and potentially V channel (from HSV)
|
307 |
+
img_lab = cv2.cvtColor(img_float, cv2.COLOR_RGB2LAB)
|
308 |
+
l, a, b = cv2.split(img_lab)
|
309 |
+
|
310 |
+
# Apply CLAHE to L channel
|
311 |
+
# ClipLimit proportional to strength
|
312 |
+
clahe_l = cv2.createCLAHE(clipLimit=max(1.0, 5.0 * strength), tileGridSize=(8, 8))
|
313 |
+
# CLAHE works on uint8, so scale L channel
|
314 |
+
l_uint8 = np.clip(l * 255.0, 0, 255).astype(np.uint8)
|
315 |
+
l_enhanced_uint8 = clahe_l.apply(l_uint8)
|
316 |
+
l_enhanced = l_enhanced_uint8.astype(np.float32) / 255.0
|
317 |
+
|
318 |
+
# Blend original and enhanced L channel based on strength
|
319 |
+
l_final = l * (1 - strength) + l_enhanced * strength
|
320 |
+
|
321 |
+
# Merge LAB and convert back to RGB
|
322 |
+
img_lab_enhanced = cv2.merge([l_final, a, b])
|
323 |
+
img_rgb_enhanced = cv2.cvtColor(img_lab_enhanced, cv2.COLOR_LAB2RGB)
|
324 |
+
|
325 |
+
# --- Additional Enhancements (optional, based on strength) ---
|
326 |
+
# Vibrance/Saturation adjustment (HSV)
|
327 |
+
img_hsv = cv2.cvtColor(img_rgb_enhanced, cv2.COLOR_RGB2HSV)
|
328 |
+
h, s, v = cv2.split(img_hsv)
|
329 |
+
|
330 |
+
# Increase saturation, more for less saturated pixels
|
331 |
+
saturation_factor = 0.4 * strength # Adjust factor as needed
|
332 |
+
s_enhanced = np.clip(s + (s * saturation_factor * (1 - s)), 0, 1)
|
333 |
+
|
334 |
+
# Slight brightness adjustment
|
335 |
+
brightness_factor = 0.1 * strength
|
336 |
+
v_enhanced = np.clip(v + (v * brightness_factor), 0, 1)
|
337 |
+
|
338 |
+
|
339 |
+
# Merge HSV and convert back to RGB
|
340 |
+
img_rgb_enhanced_hsv = cv2.cvtColor(cv2.merge([h, s_enhanced, v_enhanced]), cv2.COLOR_HSV2RGB)
|
341 |
+
|
342 |
+
# --- Subtle Detail Enhancement (Unsharp Masking effect) ---
|
343 |
+
# Convert back to uint8 for blurring
|
344 |
+
img_uint8_detail = (np.clip(img_rgb_enhanced_hsv, 0, 1) * 255).astype(np.uint8)
|
345 |
+
blur = cv2.GaussianBlur(img_uint8_detail, (0, 0), 5) # Kernel size 5, sigma automatically calculated
|
346 |
+
# Convert blur back to float for calculation
|
347 |
+
blur_float = blur.astype(np.float32) / 255.0
|
348 |
+
|
349 |
+
detail = img_rgb_enhanced_hsv - blur_float
|
350 |
+
# Add detail back, scaled by strength
|
351 |
+
img_final_float = np.clip(img_rgb_enhanced_hsv + detail * (0.8 * strength), 0, 1)
|
352 |
+
|
353 |
+
# Convert back to BGR (uint8) for output
|
354 |
+
img_bgr_enhanced = (img_final_float * 255).astype(np.uint8)
|
355 |
+
img_bgr_enhanced = cv2.cvtColor(img_bgr_enhanced, cv2.COLOR_RGB2BGR)
|
356 |
+
|
357 |
+
return img_bgr_enhanced
|
358 |
+
|
359 |
+
except Exception as e:
|
360 |
+
logger.error(f"Error during HDR enhancement: {str(e)}")
|
361 |
+
# Return original image if enhancement fails
|
362 |
+
return img_bgr
|
363 |
+
|
364 |
|
365 |
# Main image enhancement function
|
366 |
def enhance_image(image, model_name, strength=1.0, denoise=0.0, sharpen=0.0):
|
367 |
"""Enhance image using selected model with additional processing options"""
|
368 |
if image is None:
|
369 |
return "Please upload an image.", None
|
370 |
+
|
371 |
try:
|
372 |
# Load model
|
373 |
+
model, model_info = load_model(model_name)
|
374 |
+
if isinstance(model_info, str) and model_info.startswith("Failed"):
|
375 |
+
# If loading fails, model is None, info is the error message
|
376 |
+
return model_info, None
|
377 |
+
|
378 |
+
model_type = model_info # model_info now holds the model type string
|
379 |
+
|
380 |
# Preprocess image
|
381 |
img_bgr = preprocess_image(image)
|
382 |
if img_bgr is None:
|
383 |
return "Failed to process image", None
|
384 |
+
|
385 |
# Apply denoising if requested
|
386 |
if denoise > 0:
|
387 |
+
logger.info(f"Applying denoising with strength {denoise}")
|
388 |
+
# Adjust h and hColor based on denoise slider
|
389 |
+
# Recommended range for h is 10 for color images (adjust based on noise level)
|
390 |
+
h_val = int(denoise * 20 + 10) # Map 0-1 slider to approx 10-30 h value
|
391 |
img_bgr = cv2.fastNlMeansDenoisingColored(
|
392 |
+
img_bgr, None,
|
393 |
+
h=h_val,
|
394 |
+
hColor=h_val,
|
395 |
+
templateWindowSize=7,
|
396 |
searchWindowSize=21
|
397 |
)
|
398 |
+
|
399 |
+
output_bgr = img_bgr # Initialize output with potentially denoised image
|
400 |
+
|
401 |
# Process based on model type
|
402 |
if model_type == "upscale":
|
403 |
+
if model is None:
|
404 |
+
return f"Upscaling model '{model_name}' is not loaded or available.", None
|
405 |
logger.info(f"Upscaling image with {model_name}")
|
406 |
|
407 |
if model_name == "OpenCV Super Resolution":
|
408 |
# OpenCV super resolution
|
409 |
output_bgr = model.upsample(img_bgr)
|
410 |
+
|
411 |
elif model_name == "Real-ESRGAN-x4":
|
412 |
# Real-ESRGAN upscaling
|
413 |
+
# Real-ESRGAN model object has a 'predict' method
|
414 |
+
output_bgr = model.predict(img_bgr)
|
415 |
+
|
416 |
+
# No else needed, as load_model should handle fallbacks
|
417 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
elif model_type == "face":
|
419 |
+
if model is None:
|
420 |
+
return f"Face enhancement model '{model_name}' is not loaded or available.", None
|
421 |
logger.info(f"Enhancing face with {model_name}")
|
422 |
+
|
423 |
if model_name == "GFPGAN (Face Enhancement)":
|
424 |
+
# GFPGAN model object has an 'enhance' method
|
425 |
try:
|
426 |
# GFPGAN returns (cropped_faces, restored_faces, restored_img)
|
427 |
+
# restored_img is the pasted-back result
|
428 |
_, _, output_bgr = model.enhance(
|
429 |
+
img_bgr,
|
430 |
+
has_aligned=False,
|
431 |
+
only_center_face=False,
|
432 |
paste_back=True
|
433 |
)
|
434 |
except Exception as e:
|
435 |
+
logger.error(f"Error enhancing face with GFPGAN: {str(e)}")
|
436 |
+
# If GFPGAN fails, don't just return, try basic upscaling or original
|
437 |
+
# For now, let's just log and return original or denoised image
|
438 |
+
output_bgr = img_bgr # Keep the denoised (or original) image
|
439 |
+
return f"Error applying GFPGAN: {str(e)}. Returning base image.", postprocess_image(output_bgr)
|
440 |
+
|
|
|
|
|
|
|
441 |
elif model_type == "hdr":
|
442 |
+
# HDR enhancement doesn't use an external model object, it's a function call
|
443 |
+
logger.info(f"Applying HDR enhancement with strength {strength}")
|
444 |
output_bgr = enhance_hdr(img_bgr, strength=strength)
|
445 |
+
|
446 |
else:
|
447 |
+
# Should not happen if MODEL_OPTIONS is correct
|
448 |
+
return f"Unknown model type for processing: {model_type}", None
|
449 |
+
|
450 |
+
|
451 |
+
# Apply sharpening if requested (apply to the output of the main process)
|
452 |
if sharpen > 0:
|
453 |
+
logger.info(f"Applying sharpening with strength {sharpen}")
|
454 |
+
# Simple unsharp mask effect
|
455 |
+
kernel = np.array([
|
456 |
+
[0, -1, 0],
|
457 |
+
[-1, 5, -1],
|
458 |
+
[0, -1, 0]
|
459 |
+
], np.float32)
|
460 |
+
# We can adjust the strength by blending original and sharpened, or using a kernel with varying center weight
|
461 |
+
# A simpler approach is blending:
|
462 |
+
sharpened_img = cv2.filter2D(output_bgr, -1, kernel)
|
463 |
+
# Blend original output and sharpened output
|
464 |
+
output_bgr = cv2.addWeighted(output_bgr, 1.0 - sharpen, sharpened_img, sharpen, 0)
|
465 |
+
|
466 |
+
|
467 |
# Post-process and return image
|
468 |
enhanced_image = postprocess_image(output_bgr)
|
469 |
+
|
470 |
return "Image enhanced successfully!", enhanced_image
|
471 |
+
|
472 |
except Exception as e:
|
473 |
+
logger.error(f"An error occurred during image processing: {str(e)}")
|
474 |
import traceback
|
475 |
traceback.print_exc()
|
476 |
+
# Attempt to return original image on error
|
477 |
+
if image is not None:
|
478 |
+
try:
|
479 |
+
original_img_pil = Image.fromarray(cv2.cvtColor(preprocess_image(image), cv2.COLOR_BGR2RGB))
|
480 |
+
return f"Processing failed: {str(e)}. Returning original image.", original_img_pil
|
481 |
+
except Exception as post_e:
|
482 |
+
logger.error(f"Failed to return original image after error: {str(post_e)}")
|
483 |
+
return f"Processing failed: {str(e)}. Could not return image.", None
|
484 |
+
else:
|
485 |
+
return f"Processing failed: {str(e)}. No image provided.", None
|
486 |
+
|
487 |
|
488 |
# Gradio interface
|
489 |
with gr.Blocks(title="Image Upscale & Enhancement - By FebryEnsz") as demo:
|
|
|
491 |
"""
|
492 |
# 🖼️ Image Upscale & Enhancement
|
493 |
### By FebryEnsz
|
494 |
+
|
495 |
Upload an image and enhance it with AI-powered upscaling and enhancement.
|
496 |
+
|
497 |
**Features:**
|
498 |
+
- Super-resolution upscaling (4x) using Real-ESRGAN or OpenCV
|
499 |
+
- Face enhancement for portraits using GFPGAN
|
500 |
- HDR enhancement for better contrast and details
|
501 |
+
- Additional Denoise and Sharpen options
|
502 |
"""
|
503 |
)
|
504 |
+
|
505 |
with gr.Row():
|
506 |
with gr.Column(scale=1):
|
507 |
+
image_input = gr.Image(label="Upload Image", type="pil", image_mode="RGB") # Explicitly request RGB
|
508 |
|
509 |
+
# Changed gr.Box() to gr.Group()
|
510 |
+
with gr.Group(): # Replaced gr.Box()
|
511 |
gr.Markdown("### Enhancement Options")
|
512 |
model_choice = gr.Dropdown(
|
513 |
choices=list(MODEL_OPTIONS.keys()),
|
514 |
label="Model Selection",
|
515 |
+
value="OpenCV Super Resolution",
|
516 |
+
allow_flagging="never" # Optional: disable flagging
|
517 |
)
|
518 |
+
|
519 |
with gr.Accordion("Advanced Settings", open=False):
|
520 |
+
# Keep strength_slider visible but update label based on model
|
521 |
strength_slider = gr.Slider(
|
522 |
minimum=0.1,
|
523 |
maximum=1.0,
|
524 |
+
step=0.05, # Added more steps for finer control
|
525 |
+
label="Enhancement Strength", # Default label
|
526 |
value=0.8,
|
527 |
+
visible=True # Ensure it's visible
|
528 |
)
|
529 |
+
|
530 |
denoise_slider = gr.Slider(
|
531 |
minimum=0.0,
|
532 |
maximum=1.0,
|
533 |
+
step=0.05, # Added more steps
|
534 |
+
label="Noise Reduction Strength",
|
535 |
value=0.0,
|
536 |
)
|
537 |
+
|
538 |
sharpen_slider = gr.Slider(
|
539 |
minimum=0.0,
|
540 |
maximum=1.0,
|
541 |
+
step=0.05, # Added more steps
|
542 |
+
label="Sharpening Strength",
|
543 |
value=0.0,
|
544 |
)
|
545 |
+
|
546 |
enhance_button = gr.Button("✨ Enhance Image", variant="primary")
|
547 |
+
|
548 |
with gr.Column(scale=1):
|
549 |
output_text = gr.Textbox(label="Status")
|
550 |
+
output_image = gr.Image(label="Enhanced Image", type="pil") # Specify type="pil" consistently
|
551 |
+
|
552 |
# Handle model change to update UI
|
553 |
+
# This function only needs to update the label of the strength slider
|
554 |
def on_model_change(model_name):
|
555 |
model_config = MODEL_OPTIONS.get(model_name, {})
|
556 |
model_type = model_config.get("type", "")
|
557 |
+
|
|
|
558 |
if model_type == "hdr":
|
559 |
+
return gr.update(label="HDR Intensity")
|
560 |
elif model_type == "face":
|
561 |
+
return gr.update(label="Face Enhancement Strength")
|
562 |
+
elif model_type == "upscale":
|
563 |
+
return gr.update(label="Enhancement Strength") # Keep a generic label for upscale
|
564 |
else:
|
565 |
+
return gr.update(label="Enhancement Strength") # Default
|
566 |
+
|
567 |
model_choice.change(on_model_change, inputs=[model_choice], outputs=[strength_slider])
|
568 |
+
|
569 |
# Connect button to function
|
570 |
enhance_button.click(
|
571 |
fn=enhance_image,
|
572 |
inputs=[image_input, model_choice, strength_slider, denoise_slider, sharpen_slider],
|
573 |
+
outputs=[output_text, output_image],
|
574 |
+
api_name="enhance" # Optional: give it an API name
|
575 |
)
|
576 |
+
|
577 |
# Footer information
|
578 |
gr.Markdown(
|
579 |
"""
|
580 |
### Tips
|
581 |
+
- For best results with face enhancement, ensure faces are clearly visible.
|
582 |
+
- HDR enhancement works best with images that have both bright and dark areas.
|
583 |
+
- For noisy images, try increasing the noise reduction slider.
|
584 |
+
- Sharpening can add detail but may also increase noise if applied too strongly.
|
585 |
+
|
586 |
---
|
587 |
+
Version 2.1 | Running on: """ + (f"GPU 🚀 ({torch.cuda.get_device_name(0)})" if torch.cuda.is_available() else "CPU ⚙️") + """
|
588 |
+
"""
|
589 |
)
|
590 |
|
591 |
# Launch the app
|
592 |
if __name__ == "__main__":
|
593 |
+
# Use share=True for a temporary public link (useful for debugging, but not needed for Spaces)
|
594 |
+
# Use enable_queue=True for better handling of concurrent requests on Spaces
|
595 |
+
demo.launch(enable_queue=True)
|