Spaces:
Sleeping
Sleeping
File size: 2,726 Bytes
935a660 eabf510 82413ee eabf510 4480f3c d0d62c4 4480f3c 09e6c30 eabf510 09e6c30 4480f3c eabf510 4480f3c 935a660 eabf510 5b71e40 f5f665e ee4ac1e f5f665e eabf510 f414b62 d0d62c4 eabf510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import streamlit as st
import plotly.express as px
import pandas as pd
import random
from umap import UMAP
from sentence_transformers import SentenceTransformer, util
from datasets import load_dataset
@st.cache_resource
def load_model():
return SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
@st.cache_data
def load_words_dataset():
dataset = load_dataset("marksverdhei/wordnet-definitions-en-2021", split="train")
return dataset["Word"]
@st.cache_resource
def prepare_umap():
all_enc = model.encode(all_words)
umap_3d = UMAP(n_components=3, init='random', random_state=0)
proj_3d = umap_3d.fit_transform(all_enc)
return umap_3d
all_words = load_words_dataset()
model = load_model()
umap_3d = prepare_umap()
secret_word = random.choice(all_words)
secret_embedding = model.encode(secret_word)
if 'words' not in st.session_state:
st.session_state['words'] = []
if 'words_umap_df' not in st.session_state:
st.session_state['words_umap_df'] = pd.DataFrame({
"x": [],
"y": [],
"z": [],
"similarity": [],
"s": [],
"l": [],
})
words_umap_df = st.session_state['words_umap_df']
secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
words_umap_df.loc[len(words_umap_df)] = {
"x": secret_embedding_3d[0],
"y": secret_embedding_3d[1],
"z": secret_embedding_3d[2],
"similarity": 1,
"s": 10,
"l": "Secret word"
}
words_umap_df = st.session_state['words_umap_df']
st.write('Try to guess a secret word by semantic similarity')
word = st.text_input("Input a word")
used_words = [w for w, s in st.session_state['words']]
if st.button("Guess") or word:
if word not in used_words:
word_embedding = model.encode(word)
similarity = util.pytorch_cos_sim(
secret_embedding,
word_embedding
).cpu().numpy()[0][0]
st.session_state['words'].append((str(word), similarity))
pt = umap_3d.transform([word_embedding])[0]
words_umap_df.loc[len(words_umap_df)] = {
"x": pt[0],
"y": pt[1],
"z": pt[2],
"similarity": similarity,
"s": 3,
"l": str(word)
}
words_df = pd.DataFrame(
st.session_state['words'],
columns=["word", "similarity"]
).sort_values(by=["similarity"], ascending=False)
st.dataframe(words_df)
fig_3d = px.scatter_3d(word_points, x="x", y="y", z="z", color="similarity", hover_name="l", hover_data={"x": False, "y": False, "z": False, "s": False}, size="s", size_max=10, range_color=(0,1))
st.plotly_chart(fig_3d, theme="streamlit", use_container_width=True)
|