Allob commited on
Commit
eabf510
·
1 Parent(s): 5525ba3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -12
app.py CHANGED
@@ -1,5 +1,8 @@
1
  import streamlit as st
 
2
  import pandas as pd
 
 
3
  from sentence_transformers import SentenceTransformer, util
4
  from datasets import load_dataset
5
 
@@ -8,14 +11,58 @@ from datasets import load_dataset
8
  def load_model():
9
  return SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  model = load_model()
12
 
13
- secret_word = "нос"
14
- secred_embedding = model.encode(secret_word)
 
 
 
 
15
 
16
  if 'words' not in st.session_state:
17
  st.session_state['words'] = []
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  st.write('Try to guess a secret word by semantic similarity')
20
 
21
  word = st.text_input("Input a word")
@@ -25,8 +72,21 @@ used_words = [w for w, s in st.session_state['words']]
25
  if st.button("Guess") or word:
26
  if word not in used_words:
27
  word_embedding = model.encode(word)
28
- similarity = util.pytorch_cos_sim(secred_embedding, word_embedding).cpu().numpy()[0][0]
29
- st.session_state['words'].append((word, similarity))
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  words_df = pd.DataFrame(
32
  st.session_state['words'],
@@ -35,11 +95,5 @@ words_df = pd.DataFrame(
35
  st.dataframe(words_df)
36
 
37
 
38
-
39
- @st.cache_data
40
- def load_words_dataset():
41
- dataset = load_dataset("marksverdhei/wordnet-definitions-en-2021", split="train")
42
- return dataset["Word"]
43
-
44
- all_words = load_words_dataset()
45
- st.write(all_words)
 
1
  import streamlit as st
2
+ import plotly.express as px
3
  import pandas as pd
4
+ import random
5
+ from umap import UMAP
6
  from sentence_transformers import SentenceTransformer, util
7
  from datasets import load_dataset
8
 
 
11
  def load_model():
12
  return SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
13
 
14
+
15
+ @st.cache_data
16
+ def load_words_dataset():
17
+ dataset = load_dataset("marksverdhei/wordnet-definitions-en-2021", split="train")
18
+ return dataset["Word"]
19
+
20
+
21
+ @st.cache_resource
22
+ def prepare_umap():
23
+ all_enc = model.encode(all_words)
24
+ umap_3d = UMAP(n_components=3, init='random', random_state=0)
25
+ proj_3d = umap_3d.fit_transform(all_enc)
26
+ return umap_3d
27
+
28
+
29
+ all_words = load_words_dataset()
30
+
31
  model = load_model()
32
 
33
+ umap_3d = prepare_umap()
34
+
35
+
36
+ secret_word = random.choice(all_words)
37
+ secret_embedding = model.encode(secret_word)
38
+
39
 
40
  if 'words' not in st.session_state:
41
  st.session_state['words'] = []
42
 
43
+ if 'words_umap_df' not in st.session_state:
44
+ st.session_state['words_umap_df'] = pd.DataFrame({
45
+ "x": [],
46
+ "y": [],
47
+ "z": [],
48
+ "similarity": [],
49
+ "s": [],
50
+ "l": [],
51
+ })
52
+ words_umap_df = st.session_state['words_umap_df']
53
+
54
+ secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
55
+ words_umap_df.loc[len(words_umap_df)] = {
56
+ "x": secret_embedding_3d[0],
57
+ "y": secret_embedding_3d[1],
58
+ "z": secret_embedding_3d[2],
59
+ "similarity": 1,
60
+ "s": 10,
61
+ "l": "Secret word"
62
+ }
63
+
64
+ words_umap_df = st.session_state['words_umap_df']
65
+
66
  st.write('Try to guess a secret word by semantic similarity')
67
 
68
  word = st.text_input("Input a word")
 
72
  if st.button("Guess") or word:
73
  if word not in used_words:
74
  word_embedding = model.encode(word)
75
+ similarity = util.pytorch_cos_sim(
76
+ secret_embedding,
77
+ word_embedding
78
+ ).cpu().numpy()[0][0]
79
+ st.session_state['words'].append((str(word), similarity))
80
+
81
+ pt = umap_3d.transform([word_embedding])[0]
82
+ words_umap_df.loc[len(words_umap_df)] = {
83
+ "x": pt[0],
84
+ "y": pt[1],
85
+ "z": pt[2],
86
+ "similarity": similarity,
87
+ "s": 3,
88
+ "l": str(word)
89
+ }
90
 
91
  words_df = pd.DataFrame(
92
  st.session_state['words'],
 
95
  st.dataframe(words_df)
96
 
97
 
98
+ fig_3d = px.scatter_3d(word_points, x="x", y="y", z="z", color="similarity", hover_name="l", hover_data={"x": False, "y": False, "z": False, "s": False}, size="s", size_max=10, range_color=(0,1))
99
+ st.plotly_chart(fig_3d, theme="streamlit", use_container_width=True)