Spaces:
Paused
Paused
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0) | |
import gguf | |
import torch | |
import comfy.ops | |
import comfy.model_management | |
from .dequant import dequantize_tensor, is_quantized | |
# to avoid breaking really old pytorch versions | |
if hasattr(torch, "compiler") and hasattr(torch.compiler, "disable"): | |
torch_compiler_disable = torch.compiler.disable | |
else: | |
def torch_compiler_disable(*args, **kwargs): | |
def noop(x): | |
return x | |
return noop | |
class GGMLTensor(torch.Tensor): | |
""" | |
Main tensor-like class for storing quantized weights | |
""" | |
def __init__(self, *args, tensor_type, tensor_shape, patches=[], **kwargs): | |
super().__init__() | |
self.tensor_type = tensor_type | |
self.tensor_shape = tensor_shape | |
self.patches = patches | |
def __new__(cls, *args, tensor_type, tensor_shape, patches=[], **kwargs): | |
return super().__new__(cls, *args, **kwargs) | |
def to(self, *args, **kwargs): | |
new = super().to(*args, **kwargs) | |
new.tensor_type = getattr(self, "tensor_type", None) | |
new.tensor_shape = getattr(self, "tensor_shape", new.data.shape) | |
new.patches = getattr(self, "patches", []).copy() | |
return new | |
def clone(self, *args, **kwargs): | |
return self | |
def detach(self, *args, **kwargs): | |
return self | |
def copy_(self, *args, **kwargs): | |
# fixes .weight.copy_ in comfy/clip_model/CLIPTextModel | |
try: | |
return super().copy_(*args, **kwargs) | |
except Exception as e: | |
print(f"ignoring 'copy_' on tensor: {e}") | |
def new_empty(self, size, *args, **kwargs): | |
# Intel Arc fix, ref#50 | |
new_tensor = super().new_empty(size, *args, **kwargs) | |
return GGMLTensor( | |
new_tensor, | |
tensor_type = getattr(self, "tensor_type", None), | |
tensor_shape = size, | |
patches = getattr(self, "patches", []).copy() | |
) | |
def shape(self): | |
if not hasattr(self, "tensor_shape"): | |
self.tensor_shape = self.size() | |
return self.tensor_shape | |
class GGMLLayer(torch.nn.Module): | |
""" | |
This (should) be responsible for de-quantizing on the fly | |
""" | |
comfy_cast_weights = True | |
dequant_dtype = None | |
patch_dtype = None | |
largest_layer = False | |
torch_compatible_tensor_types = {None, gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16} | |
def is_ggml_quantized(self, *, weight=None, bias=None): | |
if weight is None: | |
weight = self.weight | |
if bias is None: | |
bias = self.bias | |
return is_quantized(weight) or is_quantized(bias) | |
def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs): | |
weight, bias = state_dict.get(f"{prefix}weight"), state_dict.get(f"{prefix}bias") | |
# NOTE: using modified load for linear due to not initializing on creation, see GGMLOps todo | |
if self.is_ggml_quantized(weight=weight, bias=bias) or isinstance(self, torch.nn.Linear): | |
return self.ggml_load_from_state_dict(state_dict, prefix, *args, **kwargs) | |
return super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) | |
def ggml_load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): | |
prefix_len = len(prefix) | |
for k,v in state_dict.items(): | |
if k[prefix_len:] == "weight": | |
self.weight = torch.nn.Parameter(v, requires_grad=False) | |
elif k[prefix_len:] == "bias" and v is not None: | |
self.bias = torch.nn.Parameter(v, requires_grad=False) | |
else: | |
unexpected_keys.append(k) | |
# For Linear layer with missing weight | |
if self.weight is None and isinstance(self, torch.nn.Linear): | |
v = torch.zeros(self.in_features, self.out_features) | |
self.weight = torch.nn.Parameter(v, requires_grad=False) | |
missing_keys.append(prefix+"weight") | |
# for vram estimation (TODO: less fragile logic?) | |
if getattr(self.weight, "is_largest_weight", False): | |
self.largest_layer = True | |
def _save_to_state_dict(self, *args, **kwargs): | |
if self.is_ggml_quantized(): | |
return self.ggml_save_to_state_dict(*args, **kwargs) | |
return super()._save_to_state_dict(*args, **kwargs) | |
def ggml_save_to_state_dict(self, destination, prefix, keep_vars): | |
# This is a fake state dict for vram estimation | |
weight = torch.zeros_like(self.weight, device=torch.device("meta")) | |
destination[prefix + "weight"] = weight | |
if self.bias is not None: | |
bias = torch.zeros_like(self.bias, device=torch.device("meta")) | |
destination[prefix + "bias"] = bias | |
# Take into account space required for dequantizing the largest tensor | |
if self.largest_layer: | |
shape = getattr(self.weight, "tensor_shape", self.weight.shape) | |
dtype = self.dequant_dtype or torch.float16 | |
temp = torch.empty(*shape, device=torch.device("meta"), dtype=dtype) | |
destination[prefix + "temp.weight"] = temp | |
return | |
# This would return the dequantized state dict | |
destination[prefix + "weight"] = self.get_weight(self.weight) | |
if bias is not None: | |
destination[prefix + "bias"] = self.get_weight(self.bias) | |
def get_weight(self, tensor, dtype): | |
if tensor is None: | |
return | |
# consolidate and load patches to GPU in async | |
patch_list = [] | |
device = tensor.device | |
for function, patches, key in getattr(tensor, "patches", []): | |
patch_list += move_patch_to_device(patches, device) | |
# dequantize tensor while patches load | |
weight = dequantize_tensor(tensor, dtype, self.dequant_dtype) | |
# prevent propagating custom tensor class | |
if isinstance(weight, GGMLTensor): | |
weight.__class__ = torch.Tensor | |
# apply patches | |
if patch_list: | |
if self.patch_dtype is None: | |
weight = function(patch_list, weight, key) | |
else: | |
# for testing, may degrade image quality | |
patch_dtype = dtype if self.patch_dtype == "target" else self.patch_dtype | |
weight = function(patch_list, weight, key, patch_dtype) | |
return weight | |
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None): | |
if input is not None: | |
if dtype is None: | |
dtype = getattr(input, "dtype", torch.float32) | |
if bias_dtype is None: | |
bias_dtype = dtype | |
if device is None: | |
device = input.device | |
bias = None | |
non_blocking = comfy.model_management.device_supports_non_blocking(device) | |
if s.bias is not None: | |
bias = s.get_weight(s.bias.to(device), dtype) | |
bias = comfy.ops.cast_to(bias, bias_dtype, device, non_blocking=non_blocking, copy=False) | |
weight = s.get_weight(s.weight.to(device), dtype) | |
weight = comfy.ops.cast_to(weight, dtype, device, non_blocking=non_blocking, copy=False) | |
return weight, bias | |
def forward_comfy_cast_weights(self, input, *args, **kwargs): | |
if self.is_ggml_quantized(): | |
out = self.forward_ggml_cast_weights(input, *args, **kwargs) | |
else: | |
out = super().forward_comfy_cast_weights(input, *args, **kwargs) | |
# non-ggml forward might still propagate custom tensor class | |
if isinstance(out, GGMLTensor): | |
out.__class__ = torch.Tensor | |
return out | |
def forward_ggml_cast_weights(self, input): | |
raise NotImplementedError | |
class GGMLOps(comfy.ops.manual_cast): | |
""" | |
Dequantize weights on the fly before doing the compute | |
""" | |
class Linear(GGMLLayer, comfy.ops.manual_cast.Linear): | |
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None): | |
torch.nn.Module.__init__(self) | |
# TODO: better workaround for reserved memory spike on windows | |
# Issue is with `torch.empty` still reserving the full memory for the layer | |
# Windows doesn't over-commit memory so without this 24GB+ of pagefile is used | |
self.in_features = in_features | |
self.out_features = out_features | |
self.weight = None | |
self.bias = None | |
def forward_ggml_cast_weights(self, input): | |
weight, bias = self.cast_bias_weight(input) | |
return torch.nn.functional.linear(input, weight, bias) | |
class Conv2d(GGMLLayer, comfy.ops.manual_cast.Conv2d): | |
def forward_ggml_cast_weights(self, input): | |
weight, bias = self.cast_bias_weight(input) | |
return self._conv_forward(input, weight, bias) | |
class Embedding(GGMLLayer, comfy.ops.manual_cast.Embedding): | |
def forward_ggml_cast_weights(self, input, out_dtype=None): | |
output_dtype = out_dtype | |
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16: | |
out_dtype = None | |
weight, _bias = self.cast_bias_weight(self, device=input.device, dtype=out_dtype) | |
return torch.nn.functional.embedding( | |
input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse | |
).to(dtype=output_dtype) | |
class LayerNorm(GGMLLayer, comfy.ops.manual_cast.LayerNorm): | |
def forward_ggml_cast_weights(self, input): | |
if self.weight is None: | |
return super().forward_comfy_cast_weights(input) | |
weight, bias = self.cast_bias_weight(input) | |
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) | |
class GroupNorm(GGMLLayer, comfy.ops.manual_cast.GroupNorm): | |
def forward_ggml_cast_weights(self, input): | |
weight, bias = self.cast_bias_weight(input) | |
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) | |
def move_patch_to_device(item, device): | |
if isinstance(item, torch.Tensor): | |
return item.to(device, non_blocking=True) | |
elif isinstance(item, tuple): | |
return tuple(move_patch_to_device(x, device) for x in item) | |
elif isinstance(item, list): | |
return [move_patch_to_device(x, device) for x in item] | |
else: | |
return item | |