File size: 10,760 Bytes
3483284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
import gguf
import torch

import comfy.ops
import comfy.model_management
from .dequant import dequantize_tensor, is_quantized

# to avoid breaking really old pytorch versions
if hasattr(torch, "compiler") and hasattr(torch.compiler, "disable"):
    torch_compiler_disable = torch.compiler.disable
else:
    def torch_compiler_disable(*args, **kwargs):
        def noop(x):
            return x
        return noop

class GGMLTensor(torch.Tensor):
    """

    Main tensor-like class for storing quantized weights

    """
    def __init__(self, *args, tensor_type, tensor_shape, patches=[], **kwargs):
        super().__init__()
        self.tensor_type = tensor_type
        self.tensor_shape = tensor_shape
        self.patches = patches

    def __new__(cls, *args, tensor_type, tensor_shape, patches=[], **kwargs):
        return super().__new__(cls, *args, **kwargs)

    def to(self, *args, **kwargs):
        new = super().to(*args, **kwargs)
        new.tensor_type = getattr(self, "tensor_type", None)
        new.tensor_shape = getattr(self, "tensor_shape", new.data.shape)
        new.patches = getattr(self, "patches", []).copy()
        return new

    def clone(self, *args, **kwargs):
        return self

    def detach(self, *args, **kwargs):
        return self

    def copy_(self, *args, **kwargs):
        # fixes .weight.copy_ in comfy/clip_model/CLIPTextModel
        try:
            return super().copy_(*args, **kwargs)
        except Exception as e:
            print(f"ignoring 'copy_' on tensor: {e}")

    def new_empty(self, size, *args, **kwargs):
        # Intel Arc fix, ref#50
        new_tensor = super().new_empty(size, *args, **kwargs)
        return GGMLTensor(
                new_tensor,
                tensor_type = getattr(self, "tensor_type", None),
                tensor_shape = size,
                patches = getattr(self, "patches", []).copy()
        )

    @property
    def shape(self):
        if not hasattr(self, "tensor_shape"):
            self.tensor_shape = self.size()
        return self.tensor_shape

class GGMLLayer(torch.nn.Module):
    """

    This (should) be responsible for de-quantizing on the fly

    """
    comfy_cast_weights = True
    dequant_dtype = None
    patch_dtype = None
    largest_layer = False
    torch_compatible_tensor_types = {None, gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16}

    def is_ggml_quantized(self, *, weight=None, bias=None):
        if weight is None:
            weight = self.weight
        if bias is None:
            bias = self.bias
        return is_quantized(weight) or is_quantized(bias)

    def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
        weight, bias = state_dict.get(f"{prefix}weight"), state_dict.get(f"{prefix}bias")
        # NOTE: using modified load for linear due to not initializing on creation, see GGMLOps todo 
        if self.is_ggml_quantized(weight=weight, bias=bias) or isinstance(self, torch.nn.Linear):
            return self.ggml_load_from_state_dict(state_dict, prefix, *args, **kwargs)
        return super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)

    def ggml_load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        prefix_len = len(prefix)
        for k,v in state_dict.items():
            if k[prefix_len:] == "weight":
                self.weight = torch.nn.Parameter(v, requires_grad=False)
            elif k[prefix_len:] == "bias" and v is not None:
                self.bias = torch.nn.Parameter(v, requires_grad=False)
            else:
                unexpected_keys.append(k)

        # For Linear layer with missing weight
        if self.weight is None and isinstance(self, torch.nn.Linear):
            v = torch.zeros(self.in_features, self.out_features)
            self.weight = torch.nn.Parameter(v, requires_grad=False)
            missing_keys.append(prefix+"weight")

        # for vram estimation (TODO: less fragile logic?)
        if getattr(self.weight, "is_largest_weight", False):
            self.largest_layer = True

    def _save_to_state_dict(self, *args, **kwargs):
        if self.is_ggml_quantized():
            return self.ggml_save_to_state_dict(*args, **kwargs)
        return super()._save_to_state_dict(*args, **kwargs)

    def ggml_save_to_state_dict(self, destination, prefix, keep_vars):
        # This is a fake state dict for vram estimation
        weight = torch.zeros_like(self.weight, device=torch.device("meta"))
        destination[prefix + "weight"] = weight
        if self.bias is not None:
            bias = torch.zeros_like(self.bias, device=torch.device("meta"))
            destination[prefix + "bias"] = bias

        # Take into account space required for dequantizing the largest tensor
        if self.largest_layer:
            shape = getattr(self.weight, "tensor_shape", self.weight.shape)
            dtype = self.dequant_dtype or torch.float16
            temp = torch.empty(*shape, device=torch.device("meta"), dtype=dtype)
            destination[prefix + "temp.weight"] = temp

        return
        # This would return the dequantized state dict
        destination[prefix + "weight"] = self.get_weight(self.weight)
        if bias is not None:
            destination[prefix + "bias"] = self.get_weight(self.bias)

    def get_weight(self, tensor, dtype):
        if tensor is None:
            return

        # consolidate and load patches to GPU in async
        patch_list = []
        device = tensor.device
        for function, patches, key in getattr(tensor, "patches", []):
            patch_list += move_patch_to_device(patches, device)

        # dequantize tensor while patches load
        weight = dequantize_tensor(tensor, dtype, self.dequant_dtype)

        # prevent propagating custom tensor class
        if isinstance(weight, GGMLTensor):
            weight.__class__ = torch.Tensor

        # apply patches
        if patch_list:
            if self.patch_dtype is None:
                weight = function(patch_list, weight, key)
            else:
                # for testing, may degrade image quality
                patch_dtype = dtype if self.patch_dtype == "target" else self.patch_dtype
                weight = function(patch_list, weight, key, patch_dtype)
        return weight

    @torch_compiler_disable()
    def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
        if input is not None:
            if dtype is None:
                dtype = getattr(input, "dtype", torch.float32)
            if bias_dtype is None:
                bias_dtype = dtype
            if device is None:
                device = input.device

        bias = None
        non_blocking = comfy.model_management.device_supports_non_blocking(device)
        if s.bias is not None:
            bias = s.get_weight(s.bias.to(device), dtype)
            bias = comfy.ops.cast_to(bias, bias_dtype, device, non_blocking=non_blocking, copy=False)

        weight = s.get_weight(s.weight.to(device), dtype)
        weight = comfy.ops.cast_to(weight, dtype, device, non_blocking=non_blocking, copy=False)
        return weight, bias

    def forward_comfy_cast_weights(self, input, *args, **kwargs):
        if self.is_ggml_quantized():
            out = self.forward_ggml_cast_weights(input, *args, **kwargs)
        else:
            out = super().forward_comfy_cast_weights(input, *args, **kwargs)

        # non-ggml forward might still propagate custom tensor class
        if isinstance(out, GGMLTensor):
            out.__class__ = torch.Tensor
        return out

    def forward_ggml_cast_weights(self, input):
        raise NotImplementedError

class GGMLOps(comfy.ops.manual_cast):
    """

    Dequantize weights on the fly before doing the compute

    """
    class Linear(GGMLLayer, comfy.ops.manual_cast.Linear):
        def __init__(self, in_features, out_features, bias=True, device=None, dtype=None):
            torch.nn.Module.__init__(self)
            # TODO: better workaround for reserved memory spike on windows
            # Issue is with `torch.empty` still reserving the full memory for the layer
            # Windows doesn't over-commit memory so without this 24GB+ of pagefile is used
            self.in_features = in_features
            self.out_features = out_features
            self.weight = None
            self.bias = None

        def forward_ggml_cast_weights(self, input):
            weight, bias = self.cast_bias_weight(input)
            return torch.nn.functional.linear(input, weight, bias)

    class Conv2d(GGMLLayer, comfy.ops.manual_cast.Conv2d):
        def forward_ggml_cast_weights(self, input):
            weight, bias = self.cast_bias_weight(input)
            return self._conv_forward(input, weight, bias)

    class Embedding(GGMLLayer, comfy.ops.manual_cast.Embedding):
        def forward_ggml_cast_weights(self, input, out_dtype=None):
            output_dtype = out_dtype
            if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
                out_dtype = None
            weight, _bias = self.cast_bias_weight(self, device=input.device, dtype=out_dtype)
            return torch.nn.functional.embedding(
                input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse
            ).to(dtype=output_dtype)

    class LayerNorm(GGMLLayer, comfy.ops.manual_cast.LayerNorm):
        def forward_ggml_cast_weights(self, input):
            if self.weight is None:
                return super().forward_comfy_cast_weights(input)
            weight, bias = self.cast_bias_weight(input)
            return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)

    class GroupNorm(GGMLLayer, comfy.ops.manual_cast.GroupNorm):
        def forward_ggml_cast_weights(self, input):
            weight, bias = self.cast_bias_weight(input)
            return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)

def move_patch_to_device(item, device):
    if isinstance(item, torch.Tensor):
        return item.to(device, non_blocking=True)
    elif isinstance(item, tuple):
        return tuple(move_patch_to_device(x, device) for x in item)
    elif isinstance(item, list):
        return [move_patch_to_device(x, device) for x in item]
    else:
        return item