|
import gradio as gr |
|
import logging |
|
import os |
|
import multiprocessing |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
tx_app = None |
|
TOOL_CACHE_PATH = "/home/user/.cache/tool_embeddings_done" |
|
|
|
|
|
def respond(message, chat_history, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round): |
|
global tx_app |
|
if tx_app is None: |
|
return chat_history + [("", "β οΈ Model is still loading. Please wait a few seconds and try again.")] |
|
|
|
try: |
|
if not isinstance(message, str) or len(message.strip()) < 10: |
|
return chat_history + [("", "Please enter a longer message.")] |
|
|
|
if chat_history and isinstance(chat_history[0], dict): |
|
chat_history = [(h["role"], h["content"]) for h in chat_history if "role" in h and "content" in h] |
|
|
|
response = "" |
|
for chunk in tx_app.run_gradio_chat( |
|
message=message.strip(), |
|
history=chat_history, |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
max_token=max_tokens, |
|
call_agent=multi_agent, |
|
conversation=conversation_state, |
|
max_round=max_round, |
|
seed=42, |
|
): |
|
if isinstance(chunk, dict): |
|
response += chunk.get("content", "") |
|
elif isinstance(chunk, str): |
|
response += chunk |
|
else: |
|
response += str(chunk) |
|
|
|
yield chat_history + [("user", message), ("assistant", response)] |
|
except Exception as e: |
|
logger.error(f"Respond error: {e}") |
|
yield chat_history + [("", f"β οΈ Error: {e}")] |
|
|
|
|
|
with gr.Blocks(title="TxAgent Biomedical Assistant") as app: |
|
gr.Markdown("# π§ TxAgent Biomedical Assistant") |
|
|
|
chatbot = gr.Chatbot(label="Conversation", height=600, type="messages") |
|
msg = gr.Textbox(label="Your medical query", placeholder="Type your biomedical question...", lines=3) |
|
|
|
with gr.Row(): |
|
temp = gr.Slider(0, 1, value=0.3, label="Temperature") |
|
max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens") |
|
max_tokens = gr.Slider(128, 81920, value=81920, label="Max Total Tokens") |
|
max_rounds = gr.Slider(1, 30, value=10, label="Max Rounds") |
|
multi_agent = gr.Checkbox(label="Multi-Agent Mode") |
|
|
|
conversation_state = gr.State([]) |
|
submit = gr.Button("Submit") |
|
clear = gr.Button("Clear") |
|
|
|
submit.click( |
|
respond, |
|
[msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, conversation_state, max_rounds], |
|
chatbot |
|
) |
|
clear.click(lambda: [], None, chatbot) |
|
msg.submit( |
|
respond, |
|
[msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, conversation_state, max_rounds], |
|
chatbot |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
multiprocessing.set_start_method("spawn", force=True) |
|
|
|
import tooluniverse |
|
from txagent import TxAgent |
|
from importlib.resources import files |
|
|
|
|
|
original_infer = tooluniverse.ToolUniverse.infer_tool_embeddings |
|
|
|
def patched_infer(self, *args, **kwargs): |
|
original_infer(self, *args, **kwargs) |
|
print("β
Patched: Skipping forced exit() after embedding.") |
|
|
|
tooluniverse.ToolUniverse.infer_tool_embeddings = patched_infer |
|
|
|
logger.info("π₯ Initializing TxAgent...") |
|
|
|
tool_files = { |
|
"opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')), |
|
"fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')), |
|
"special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')), |
|
"monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')) |
|
} |
|
|
|
tx_app = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict=tool_files, |
|
enable_finish=True, |
|
enable_rag=True, |
|
enable_summary=False, |
|
init_rag_num=0, |
|
step_rag_num=10, |
|
summary_mode='step', |
|
summary_skip_last_k=0, |
|
summary_context_length=None, |
|
force_finish=True, |
|
avoid_repeat=True, |
|
seed=42, |
|
enable_checker=True, |
|
enable_chat=False, |
|
additional_default_tools=["DirectResponse", "RequireClarification"] |
|
) |
|
|
|
|
|
if not os.path.exists(TOOL_CACHE_PATH): |
|
tx_app.init_model() |
|
os.makedirs(os.path.dirname(TOOL_CACHE_PATH), exist_ok=True) |
|
with open(TOOL_CACHE_PATH, "w") as f: |
|
f.write("done") |
|
else: |
|
tx_app.init_model(skip_tool_embedding=True) |
|
|
|
logger.info("β
TxAgent ready.") |
|
|