File size: 4,867 Bytes
9aeb1dd
1c98688
458d2c3
9fcd791
bb17715
41dec39
1c98688
 
410d25f
458d2c3
9fcd791
79fb3cd
41dec39
1c98688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fcd791
1c98688
 
 
 
41dec39
1c98688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41dec39
1c98688
 
 
41dec39
1c98688
41dec39
c117260
41dec39
 
c117260
 
 
 
 
41dec39
1c98688
41dec39
1c98688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c117260
1c98688
 
41dec39
458d2c3
9fcd791
458d2c3
 
 
 
c117260
41dec39
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import logging
import os
import multiprocessing

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

tx_app = None
TOOL_CACHE_PATH = "/home/user/.cache/tool_embeddings_done"

# Chatbot response function
def respond(message, chat_history, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round):
    global tx_app
    if tx_app is None:
        return chat_history + [("", "⚠️ Model is still loading. Please wait a few seconds and try again.")]

    try:
        if not isinstance(message, str) or len(message.strip()) < 10:
            return chat_history + [("", "Please enter a longer message.")]

        if chat_history and isinstance(chat_history[0], dict):
            chat_history = [(h["role"], h["content"]) for h in chat_history if "role" in h and "content" in h]

        response = ""
        for chunk in tx_app.run_gradio_chat(
            message=message.strip(),
            history=chat_history,
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            max_token=max_tokens,
            call_agent=multi_agent,
            conversation=conversation_state,
            max_round=max_round,
            seed=42,
        ):
            if isinstance(chunk, dict):
                response += chunk.get("content", "")
            elif isinstance(chunk, str):
                response += chunk
            else:
                response += str(chunk)

            yield chat_history + [("user", message), ("assistant", response)]
    except Exception as e:
        logger.error(f"Respond error: {e}")
        yield chat_history + [("", f"⚠️ Error: {e}")]

# === Gradio UI ===
with gr.Blocks(title="TxAgent Biomedical Assistant") as app:
    gr.Markdown("# 🧠 TxAgent Biomedical Assistant")

    chatbot = gr.Chatbot(label="Conversation", height=600, type="messages")
    msg = gr.Textbox(label="Your medical query", placeholder="Type your biomedical question...", lines=3)

    with gr.Row():
        temp = gr.Slider(0, 1, value=0.3, label="Temperature")
        max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens")
        max_tokens = gr.Slider(128, 81920, value=81920, label="Max Total Tokens")
        max_rounds = gr.Slider(1, 30, value=10, label="Max Rounds")
        multi_agent = gr.Checkbox(label="Multi-Agent Mode")

    conversation_state = gr.State([])
    submit = gr.Button("Submit")
    clear = gr.Button("Clear")

    submit.click(
        respond,
        [msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, conversation_state, max_rounds],
        chatbot
    )
    clear.click(lambda: [], None, chatbot)
    msg.submit(
        respond,
        [msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, conversation_state, max_rounds],
        chatbot
    )

# === Safe model initialization ===
if __name__ == "__main__":
    multiprocessing.set_start_method("spawn", force=True)

    import tooluniverse
    from txagent import TxAgent
    from importlib.resources import files

    # βœ… Patch ToolUniverse to prevent exit() after embedding
    original_infer = tooluniverse.ToolUniverse.infer_tool_embeddings

    def patched_infer(self, *args, **kwargs):
        original_infer(self, *args, **kwargs)
        print("βœ… Patched: Skipping forced exit() after embedding.")

    tooluniverse.ToolUniverse.infer_tool_embeddings = patched_infer

    logger.info("πŸ”₯ Initializing TxAgent...")

    tool_files = {
        "opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')),
        "fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')),
        "special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')),
        "monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json'))
    }

    tx_app = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict=tool_files,
        enable_finish=True,
        enable_rag=True,
        enable_summary=False,
        init_rag_num=0,
        step_rag_num=10,
        summary_mode='step',
        summary_skip_last_k=0,
        summary_context_length=None,
        force_finish=True,
        avoid_repeat=True,
        seed=42,
        enable_checker=True,
        enable_chat=False,
        additional_default_tools=["DirectResponse", "RequireClarification"]
    )

    # πŸš€ Run full embedding once, then cache
    if not os.path.exists(TOOL_CACHE_PATH):
        tx_app.init_model()
        os.makedirs(os.path.dirname(TOOL_CACHE_PATH), exist_ok=True)
        with open(TOOL_CACHE_PATH, "w") as f:
            f.write("done")
    else:
        tx_app.init_model(skip_tool_embedding=True)

    logger.info("βœ… TxAgent ready.")