Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,81 +3,85 @@ import gradio as gr
|
|
3 |
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
6 |
from sklearn.model_selection import train_test_split
|
7 |
-
|
8 |
import tensorflow as tf
|
9 |
-
from transformers import BertTokenizer, TFBertModel
|
10 |
-
from tensorflow.keras.layers import Dense
|
11 |
-
from tensorflow.keras.models import Sequential
|
12 |
-
from tensorflow.keras.models import load_model
|
13 |
-
|
14 |
-
from sklearn.metrics import classification_report,confusion_matrix
|
15 |
-
import re
|
16 |
import nltk
|
17 |
-
|
|
|
18 |
nltk.download('stopwords')
|
19 |
|
20 |
-
# Load
|
21 |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
22 |
bert_model = TFBertModel.from_pretrained("bert-base-uncased")
|
23 |
|
24 |
-
#
|
25 |
-
def bert_embeddings(texts, max_length=64):
|
26 |
-
inputs = tokenizer(
|
27 |
-
texts.tolist(),
|
28 |
-
return_tensors="tf",
|
29 |
-
padding=True,
|
30 |
-
truncation=True,
|
31 |
-
max_length=max_length
|
32 |
-
)
|
33 |
-
outputs = bert_model(inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
34 |
-
cls_embeddings = outputs.last_hidden_state[:, 0, :] # CLS token's embedding
|
35 |
-
return cls_embeddings
|
36 |
-
|
37 |
file_path = "https://raw.githubusercontent.com/alexvatti/full-stack-data-science/main/NLP-Exercises/Movie-Review/IMDB%20Dataset.csv"
|
38 |
-
movies_df=pd.read_csv(file_path)
|
39 |
|
|
|
40 |
def remove_tags(txt):
|
41 |
-
removelist = "" # Add any characters you'd like to keep
|
42 |
-
# Remove HTML tags
|
43 |
result = re.sub(r'<[^>]+>', '', txt)
|
44 |
-
|
45 |
-
result = re.sub(r'
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
result = result.lower()
|
50 |
-
return result
|
51 |
-
|
52 |
-
def remove_stop_wrods(txt):
|
53 |
stop_words = set(stopwords.words('english'))
|
54 |
-
return ' '.join([word for word in txt.split() if word not in
|
55 |
|
56 |
movies_df['review'] = movies_df['review'].apply(remove_tags)
|
57 |
-
movies_df['review'] = movies_df['review'].apply(
|
58 |
-
movies_df[
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
classifier = Sequential([
|
67 |
Dense(128, activation='relu', input_shape=(768,)),
|
68 |
-
Dense(1, activation='sigmoid')
|
69 |
])
|
70 |
|
71 |
-
# Compile the classifier
|
72 |
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
73 |
|
74 |
-
# Train
|
75 |
classifier.fit(X_train_embeddings, y_train, epochs=5, batch_size=32, validation_split=0.1)
|
76 |
|
77 |
-
# Evaluate
|
78 |
test_loss, test_accuracy = classifier.evaluate(X_test_embeddings, y_test)
|
79 |
print(f"Test Accuracy: {test_accuracy}")
|
80 |
|
|
|
81 |
# Predictions and confusion matrix
|
82 |
y_pred = (classifier.predict(X_test_embeddings) > 0.5).astype("int32")
|
83 |
conf_matrix = confusion_matrix(y_test, y_pred)
|
|
|
3 |
|
4 |
import numpy as np
|
5 |
import pandas as pd
|
6 |
+
import re
|
7 |
+
from tensorflow.keras.models import Sequential
|
8 |
+
from tensorflow.keras.layers import Dense
|
9 |
+
from transformers import BertTokenizer, TFBertModel
|
10 |
from sklearn.model_selection import train_test_split
|
11 |
+
from nltk.corpus import stopwords
|
12 |
import tensorflow as tf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
import nltk
|
14 |
+
|
15 |
+
# Download stopwords
|
16 |
nltk.download('stopwords')
|
17 |
|
18 |
+
# Load tokenizer and model
|
19 |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
20 |
bert_model = TFBertModel.from_pretrained("bert-base-uncased")
|
21 |
|
22 |
+
# Load dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
file_path = "https://raw.githubusercontent.com/alexvatti/full-stack-data-science/main/NLP-Exercises/Movie-Review/IMDB%20Dataset.csv"
|
24 |
+
movies_df = pd.read_csv(file_path)
|
25 |
|
26 |
+
# Clean text
|
27 |
def remove_tags(txt):
|
|
|
|
|
28 |
result = re.sub(r'<[^>]+>', '', txt)
|
29 |
+
result = re.sub(r'https?://\S+', '', result)
|
30 |
+
result = re.sub(r'[^a-zA-Z0-9\s]', ' ', result)
|
31 |
+
return result.lower()
|
32 |
+
|
33 |
+
def remove_stop_words(txt):
|
|
|
|
|
|
|
|
|
34 |
stop_words = set(stopwords.words('english'))
|
35 |
+
return ' '.join([word for word in txt.split() if word not in stop_words])
|
36 |
|
37 |
movies_df['review'] = movies_df['review'].apply(remove_tags)
|
38 |
+
movies_df['review'] = movies_df['review'].apply(remove_stop_words)
|
39 |
+
movies_df['Category'] = movies_df['sentiment'].apply(lambda x: 1 if x == 'positive' else 0)
|
40 |
+
|
41 |
+
# Train-test split
|
42 |
+
X_train, X_test, y_train, y_test = train_test_split(movies_df['review'], movies_df['Category'], test_size=0.2, random_state=42)
|
43 |
+
|
44 |
+
# Convert labels to TensorFlow format
|
45 |
+
y_train = tf.convert_to_tensor(y_train.values, dtype=tf.float32)
|
46 |
+
y_test = tf.convert_to_tensor(y_test.values, dtype=tf.float32)
|
47 |
+
|
48 |
+
# Batch-wise BERT embeddings
|
49 |
+
def bert_embeddings_batch(texts, batch_size=32, max_length=64):
|
50 |
+
embeddings = []
|
51 |
+
for i in range(0, len(texts), batch_size):
|
52 |
+
batch_texts = texts[i:i + batch_size]
|
53 |
+
inputs = tokenizer(
|
54 |
+
batch_texts.tolist(),
|
55 |
+
return_tensors="tf",
|
56 |
+
padding=True,
|
57 |
+
truncation=True,
|
58 |
+
max_length=max_length
|
59 |
+
)
|
60 |
+
outputs = bert_model(inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
61 |
+
cls_embeddings = outputs.last_hidden_state[:, 0, :]
|
62 |
+
embeddings.append(cls_embeddings.numpy())
|
63 |
+
return np.vstack(embeddings)
|
64 |
+
|
65 |
+
# Compute embeddings
|
66 |
+
X_train_embeddings = bert_embeddings_batch(X_train)
|
67 |
+
X_test_embeddings = bert_embeddings_batch(X_test)
|
68 |
+
|
69 |
+
# Define classifier
|
70 |
classifier = Sequential([
|
71 |
Dense(128, activation='relu', input_shape=(768,)),
|
72 |
+
Dense(1, activation='sigmoid')
|
73 |
])
|
74 |
|
|
|
75 |
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
76 |
|
77 |
+
# Train classifier
|
78 |
classifier.fit(X_train_embeddings, y_train, epochs=5, batch_size=32, validation_split=0.1)
|
79 |
|
80 |
+
# Evaluate
|
81 |
test_loss, test_accuracy = classifier.evaluate(X_test_embeddings, y_test)
|
82 |
print(f"Test Accuracy: {test_accuracy}")
|
83 |
|
84 |
+
|
85 |
# Predictions and confusion matrix
|
86 |
y_pred = (classifier.predict(X_test_embeddings) > 0.5).astype("int32")
|
87 |
conf_matrix = confusion_matrix(y_test, y_pred)
|