Alexvatti commited on
Commit
f94741c
·
verified ·
1 Parent(s): 40a1d0b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -22,7 +22,7 @@ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
22
  bert_model = TFBertModel.from_pretrained("bert-base-uncased")
23
 
24
  # Define function to create embeddings
25
- def bert_embeddings(texts, max_length=128):
26
  inputs = tokenizer(
27
  texts.tolist(),
28
  return_tensors="tf",
@@ -89,14 +89,14 @@ print("\nClassification Report:")
89
  print(class_report)
90
 
91
  # Save the trained model to a file
92
- classifier.save("movie_sentiment_model.h5")
93
 
94
  def fn(test_review):
95
  review=remove_tags(test_review)
96
  review=remove_stop_wrods(review)
97
  cls_embeddings = bert_embeddings([review])
98
- loaded_model = load_model("movie_sentiment_model.h5")
99
- prediction = loaded_model.predict(cls_embeddings)
100
  return "Positive" if prediction[0] > 0.5 else "Negative"
101
 
102
  description = "Give a review of a movie that you like(or hate, sarcasm intended XD) and the model will let you know just how much your review truely reflects your emotions. "
 
22
  bert_model = TFBertModel.from_pretrained("bert-base-uncased")
23
 
24
  # Define function to create embeddings
25
+ def bert_embeddings(texts, max_length=64):
26
  inputs = tokenizer(
27
  texts.tolist(),
28
  return_tensors="tf",
 
89
  print(class_report)
90
 
91
  # Save the trained model to a file
92
+ #classifier.save("movie_sentiment_model.h5")
93
 
94
  def fn(test_review):
95
  review=remove_tags(test_review)
96
  review=remove_stop_wrods(review)
97
  cls_embeddings = bert_embeddings([review])
98
+ #loaded_model = load_model("movie_sentiment_model.h5")
99
+ prediction = classifier.predict(cls_embeddings)
100
  return "Positive" if prediction[0] > 0.5 else "Negative"
101
 
102
  description = "Give a review of a movie that you like(or hate, sarcasm intended XD) and the model will let you know just how much your review truely reflects your emotions. "