Spaces:
Build error
Build error
import numpy as np | |
import torch | |
import torch.nn as nn | |
import math | |
def quantize(x, scale, zero, maxq): | |
if maxq < 0: | |
return (x > scale / 2).float() * scale + (x < zero / 2).float() * zero | |
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq) | |
return scale * (q - zero) | |
class Quantizer(nn.Module): | |
def __init__(self, shape=1): | |
super(Quantizer, self).__init__() | |
self.register_buffer('maxq', torch.tensor(0)) | |
self.register_buffer('scale', torch.zeros(shape)) | |
self.register_buffer('zero', torch.zeros(shape)) | |
def configure( | |
self, | |
bits, perchannel=False, sym=True, | |
mse=False, norm=2.4, grid=100, maxshrink=.8, | |
trits=False | |
): | |
self.maxq = torch.tensor(2 ** bits - 1) | |
self.perchannel = perchannel | |
self.sym = sym | |
self.mse = mse | |
self.norm = norm | |
self.grid = grid | |
self.maxshrink = maxshrink | |
if trits: | |
self.maxq = torch.tensor(-1) | |
def find_params(self, x, weight=False): | |
dev = x.device | |
self.maxq = self.maxq.to(dev) | |
shape = x.shape | |
if self.perchannel: | |
if weight: | |
x = x.flatten(1) | |
else: | |
if len(shape) == 4: | |
x = x.permute([1, 0, 2, 3]) | |
x = x.flatten(1) | |
if len(shape) == 3: | |
x = x.reshape((-1, shape[-1])).t() | |
if len(shape) == 2: | |
x = x.t() | |
else: | |
x = x.flatten().unsqueeze(0) | |
tmp = torch.zeros(x.shape[0], device=dev) | |
xmin = torch.minimum(x.min(1)[0], tmp) | |
xmax = torch.maximum(x.max(1)[0], tmp) | |
if self.sym: | |
xmax = torch.maximum(torch.abs(xmin), xmax) | |
tmp = xmin < 0 | |
if torch.any(tmp): | |
xmin[tmp] = -xmax[tmp] | |
tmp = (xmin == 0) & (xmax == 0) | |
xmin[tmp] = -1 | |
xmax[tmp] = +1 | |
if self.maxq < 0: | |
self.scale = xmax | |
self.zero = xmin | |
else: | |
self.scale = (xmax - xmin) / self.maxq | |
if self.sym: | |
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2) | |
else: | |
self.zero = torch.round(-xmin / self.scale) | |
if self.mse: | |
best = torch.full([x.shape[0]], float('inf'), device=dev) | |
for i in range(int(self.maxshrink * self.grid)): | |
p = 1 - i / self.grid | |
xmin1 = p * xmin | |
xmax1 = p * xmax | |
scale1 = (xmax1 - xmin1) / self.maxq | |
zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero | |
q = quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq) | |
q -= x | |
q.abs_() | |
q.pow_(self.norm) | |
err = torch.sum(q, 1) | |
tmp = err < best | |
if torch.any(tmp): | |
best[tmp] = err[tmp] | |
self.scale[tmp] = scale1[tmp] | |
self.zero[tmp] = zero1[tmp] | |
if not self.perchannel: | |
if weight: | |
tmp = shape[0] | |
else: | |
tmp = shape[1] if len(shape) != 3 else shape[2] | |
self.scale = self.scale.repeat(tmp) | |
self.zero = self.zero.repeat(tmp) | |
if weight: | |
shape = [-1] + [1] * (len(shape) - 1) | |
self.scale = self.scale.reshape(shape) | |
self.zero = self.zero.reshape(shape) | |
return | |
if len(shape) == 4: | |
self.scale = self.scale.reshape((1, -1, 1, 1)) | |
self.zero = self.zero.reshape((1, -1, 1, 1)) | |
if len(shape) == 3: | |
self.scale = self.scale.reshape((1, 1, -1)) | |
self.zero = self.zero.reshape((1, 1, -1)) | |
if len(shape) == 2: | |
self.scale = self.scale.unsqueeze(0) | |
self.zero = self.zero.unsqueeze(0) | |
def quantize(self, x): | |
if self.ready(): | |
return quantize(x, self.scale, self.zero, self.maxq) | |
return x | |
def enabled(self): | |
return self.maxq > 0 | |
def ready(self): | |
return torch.all(self.scale != 0) | |
try: | |
import quant_cuda | |
except: | |
print('CUDA extension not installed.') | |
# Assumes layer is perfectly divisible into 256 * 256 blocks | |
class QuantLinear(nn.Module): | |
def __init__(self, bits, groupsize, infeatures, outfeatures, faster=False, kernel_switch_threshold=128): | |
super().__init__() | |
if bits not in [2,3,4,8]: | |
raise NotImplementedError("Only 2,3,4,8 bits are supported.") | |
self.infeatures = infeatures | |
self.outfeatures = outfeatures | |
self.bits = bits | |
if groupsize != -1 and groupsize < 32 and groupsize != int(math.pow(2,int(math.log2(groupsize)))): | |
raise NotImplementedError("groupsize supports powers of 2 greater than 32. (e.g. : 32,64,128,etc)") | |
groupsize = groupsize if groupsize != -1 else infeatures | |
self.groupsize = groupsize | |
self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures/groupsize),outfeatures // 256 * (bits * 8)), dtype=torch.int)) | |
self.register_buffer('scales', torch.zeros((math.ceil(infeatures/groupsize),outfeatures))) | |
self.register_buffer('bias', torch.zeros(outfeatures)) | |
self.register_buffer( | |
'qweight', torch.zeros((infeatures // 32 * bits, outfeatures), dtype=torch.int) | |
) | |
self.half_indim = self.infeatures // 2 | |
self._initialized_quant_state = False | |
self.faster = faster | |
# kernel_switch_threshold is the cutoff input size after which matmul | |
# is performed by unpacking the weights and using torch.matmul | |
self.kernel_switch_threshold = kernel_switch_threshold | |
if isinstance(self.kernel_switch_threshold, bool): | |
self.kernel_switch_threshold = 128 if self.kernel_switch_threshold else None | |
if not self.kernel_switch_threshold is None: | |
# Buffers for bit shifting weight unpacking | |
if self.bits == 2: | |
self.register_buffer( | |
'wf1', | |
torch.tensor([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30], dtype=torch.int32).unsqueeze(0).unsqueeze(2), | |
persistent=False | |
) | |
self.register_buffer( | |
'wf2', | |
torch.tensor([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30], dtype=torch.int32).unsqueeze(0).unsqueeze(0), | |
persistent=False | |
) | |
elif self.bits == 3: | |
self.register_buffer('wf1', torch.tensor([ | |
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0], | |
[0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31], | |
[0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0], | |
], dtype=torch.int32).reshape(1,3,12,1), persistent=False) | |
self.register_buffer('wf2', torch.tensor([ | |
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0], | |
[0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31], | |
[0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0], | |
], dtype=torch.int32).reshape(1,1,3,12), persistent=False) | |
elif self.bits == 4: | |
self.register_buffer( | |
'wf1', | |
torch.tensor([0, 4, 8, 12, 16, 20, 24, 28], dtype=torch.int32).unsqueeze(0).unsqueeze(2), | |
persistent=False | |
) | |
self.register_buffer( | |
'wf2', | |
torch.tensor([0, 4, 8, 12, 16, 20, 24, 28], dtype=torch.int32).unsqueeze(0).unsqueeze(0), | |
persistent=False | |
) | |
elif self.bits == 8: | |
self.register_buffer( | |
'wf1', | |
torch.tensor([0, 8, 16, 24], dtype=torch.int32).unsqueeze(0).unsqueeze(2), | |
persistent=False | |
) | |
self.register_buffer( | |
'wf2', | |
torch.tensor([0, 8, 16, 24], dtype=torch.int32).unsqueeze(0).unsqueeze(0), | |
persistent=False | |
) | |
def pack(self, linear, scales, zeros): | |
scales = scales.t().contiguous() | |
zeros = zeros.t().contiguous() | |
scale_zeros = zeros * scales | |
self.scales = scales.clone() | |
if linear.bias is not None: | |
self.bias = linear.bias.clone() | |
intweight = [] | |
for idx in range(self.infeatures): | |
g_idx = idx // self.groupsize | |
intweight.append(torch.round((linear.weight.data[:,idx] + scale_zeros[g_idx]) / self.scales[g_idx]).to(torch.int)[:,None]) | |
intweight = torch.cat(intweight,dim=1) | |
intweight = intweight.t().contiguous() | |
intweight = intweight.numpy().astype(np.uint32) | |
qweight = np.zeros( | |
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32 | |
) | |
i = 0 | |
row = 0 | |
while row < qweight.shape[0]: | |
if self.bits in [2,4,8]: | |
for j in range(i, i + (32//self.bits)): | |
qweight[row] |= intweight[j] << (self.bits * (j - i)) | |
i += 32//self.bits | |
row += 1 | |
elif self.bits == 3: | |
for j in range(i, i + 10): | |
qweight[row] |= intweight[j] << (3 * (j - i)) | |
i += 10 | |
qweight[row] |= intweight[i] << 30 | |
row += 1 | |
qweight[row] |= (intweight[i] >> 2) & 1 | |
i += 1 | |
for j in range(i, i + 10): | |
qweight[row] |= intweight[j] << (3 * (j - i) + 1) | |
i += 10 | |
qweight[row] |= intweight[i] << 31 | |
row += 1 | |
qweight[row] |= (intweight[i] >> 1) & 0x3 | |
i += 1 | |
for j in range(i, i + 10): | |
qweight[row] |= intweight[j] << (3 * (j - i) + 2) | |
i += 10 | |
row += 1 | |
else: | |
raise NotImplementedError("Only 2,3,4,8 bits are supported.") | |
qweight = qweight.astype(np.int32) | |
self.qweight = torch.from_numpy(qweight) | |
zeros -= 1; | |
zeros = zeros.numpy().astype(np.uint32) | |
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 256 * (self.bits * 8)), dtype=np.uint32) | |
i = 0 | |
col = 0 | |
while col < qzeros.shape[1]: | |
if self.bits in [2,4,8]: | |
for j in range(i, i + (32//self.bits)): | |
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) | |
i += 32//self.bits | |
col += 1 | |
elif self.bits == 3: | |
for j in range(i, i + 10): | |
qzeros[:, col] |= zeros[:, j] << (3 * (j - i)) | |
i += 10 | |
qzeros[:, col] |= zeros[:, i] << 30 | |
col += 1 | |
qzeros[:, col] |= (zeros[:, i] >> 2) & 1 | |
i += 1 | |
for j in range(i, i + 10): | |
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1) | |
i += 10 | |
qzeros[:, col] |= zeros[:, i] << 31 | |
col += 1 | |
qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3 | |
i += 1 | |
for j in range(i, i + 10): | |
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2) | |
i += 10 | |
col += 1 | |
else: | |
raise NotImplementedError("Only 2,3,4,8 bits are supported.") | |
qzeros = qzeros.astype(np.int32) | |
self.qzeros = torch.from_numpy(qzeros) | |
def forward(self, x): | |
if not self._initialized_quant_state: | |
# Do we even have a bias? Check for at least one non-zero element. | |
if self.bias is not None and bool(torch.any(self.bias != 0)): | |
# Then make sure it's the right type. | |
self.bias.data = self.bias.data.to(torch.float32) | |
else: | |
self.bias = None | |
if not self.kernel_switch_threshold is None and (x.shape[0] * x.shape[1]) >= self.kernel_switch_threshold: | |
if self.bits == 2: | |
# Unpack 2bit weights | |
weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 16, -1), self.wf1).to(torch.int8) | |
torch.bitwise_and(weight, 0x00000003, out=weight) | |
weight = weight.reshape(-1, self.groupsize, weight.shape[2]) | |
zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 16), self.wf2).to(torch.int8) | |
torch.bitwise_and(zeros, 0x00000003, out=zeros) | |
zeros = zeros + 1 | |
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2]) | |
scales = self.scales | |
scales = scales.reshape(-1, 1, scales.shape[-1]) | |
weights = (scales * (weight - zeros)) | |
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2]) | |
x = torch.matmul(x, weights.to(x.dtype)) | |
x = x + self.bias if self.bias is not None else x | |
return x | |
elif self.bits == 3: | |
# Unpack 3bit weights | |
weight = self.qweight.reshape(self.qweight.shape[0]//3, 3, 1, self.qweight.shape[1]).expand(-1, -1, 12, -1) | |
weight = (weight >> self.wf1)&0x7 | |
weight[:,0,10] = (weight[:,0,10]&0x3) | ((weight[:,1,0] << 2)&0x4) | |
weight[:,1,11] = (weight[:,1,11]&0x1) | ((weight[:,2,0] << 1)&0x6) | |
weight = weight & 0x7 | |
weight = torch.cat([weight[:,0,:11], weight[:,1,1:12], weight[:,2,1:11]], dim=1) | |
weight = weight.reshape(-1, self.groupsize, weight.shape[2]) | |
zeros = self.qzeros.reshape(self.qzeros.shape[0], self.qzeros.shape[1]//3, 3, 1).expand(-1, -1, -1, 12) | |
zeros = (zeros >> self.wf2) | |
zeros[:,:,0,10] = (zeros[:,:,0,10]&0x3) | ((zeros[:,:,1,0] << 2)&0x4) | |
zeros[:,:,1,11] = (zeros[:,:,1,11]&0x1) | ((zeros[:,:,2,0] << 1)&0x6) | |
zeros = zeros & 0x7 | |
zeros = torch.cat([zeros[:,:,0,:11], zeros[:,:,1,1:12], zeros[:,:,2,1:11]], dim=2) | |
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2]) | |
zeros = zeros + 1 | |
scales = self.scales | |
scales = scales.reshape(-1, 1, scales.shape[-1]) | |
weights = (scales * (weight - zeros)) | |
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2]) | |
x = torch.matmul(x, weights.to(x.dtype)) | |
x = x + self.bias if self.bias is not None else x | |
return x | |
elif self.bits == 4: | |
# Unpack 4bit weights | |
weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 8, -1), self.wf1).to(torch.int8) | |
torch.bitwise_and(weight, 0x0000000F, out=weight) | |
weight = weight.reshape(-1, self.groupsize, weight.shape[2]) | |
zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 8), self.wf2).to(torch.int8) | |
torch.bitwise_and(zeros, 0x0000000F, out=zeros) | |
zeros = zeros + 1 | |
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2]) | |
scales = self.scales | |
scales = scales.reshape(-1, 1, scales.shape[-1]) | |
weights = (scales * (weight - zeros)) | |
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2]) | |
x = torch.matmul(x, weights.to(x.dtype)) | |
x = x + self.bias if self.bias is not None else x | |
return x | |
elif self.bits == 8: | |
# Unpack 8bit weights | |
weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 4, -1), self.wf1).to(torch.int8) | |
torch.bitwise_and(weight, 0x000000FF, out=weight) | |
weight = weight.reshape(-1, self.groupsize, weight.shape[2]) | |
zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 4), self.wf2).to(torch.int8) | |
torch.bitwise_and(zeros, 0x000000FF, out=zeros) | |
zeros = zeros + 1 | |
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2]) | |
scales = self.scales | |
scales = scales.reshape(-1, 1, scales.shape[-1]) | |
weights = (scales * (weight - zeros)) | |
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2]) | |
x = torch.matmul(x, weights.to(x.dtype)) | |
x = x + self.bias if self.bias is not None else x | |
return x | |
else: | |
raise NotImplementedError("Only 2,3,4,8 bits are supported.") | |
outshape = list(x.shape) | |
outshape[-1] = self.outfeatures | |
x = x.reshape(-1, x.shape[-1]) | |
if self.bias is None: | |
y = torch.zeros(x.shape[0], outshape[-1], dtype=torch.float32, device=x.device) | |
else: | |
y = self.bias.clone().repeat(x.shape[0], 1) | |
output_dtype = x.dtype | |
if self.faster: | |
x = x.half() | |
if self.bits == 2: | |
quant_cuda.vecquant2matmul_faster(x, self.qweight, y, self.scales, self.qzeros, self.groupsize, self.half_indim) | |
elif self.bits == 3: | |
quant_cuda.vecquant3matmul_faster(x, self.qweight, y, self.scales, self.qzeros, self.groupsize, self.half_indim) | |
elif self.bits == 4: | |
quant_cuda.vecquant4matmul_faster(x, self.qweight, y, self.scales, self.qzeros, self.groupsize, self.half_indim) | |
else: | |
raise NotImplementedError("Only 2,3,4 bits are supported.") | |
else: | |
x = x.float() | |
if self.bits == 2: | |
quant_cuda.vecquant2matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize) | |
elif self.bits == 3: | |
quant_cuda.vecquant3matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize) | |
elif self.bits == 4: | |
quant_cuda.vecquant4matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize) | |
elif self.bits == 8: | |
quant_cuda.vecquant8matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize) | |
else: | |
raise NotImplementedError("Only 2,3,4,8 bits are supported.") | |
y = y.to(output_dtype) | |
return y.reshape(outshape) | |
def make_quant(module, names, bits, groupsize, faster=False, name='', kernel_switch_threshold=128): | |
if isinstance(module, QuantLinear): | |
return | |
for attr in dir(module): | |
tmp = getattr(module, attr) | |
name1 = name + '.' + attr if name != '' else attr | |
if name1 in names: | |
delattr(module, attr) | |
setattr( | |
module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, faster=faster, kernel_switch_threshold=kernel_switch_threshold) | |
) | |
for name1, child in module.named_children(): | |
make_quant(child, names, bits, groupsize, faster, name + '.' + name1 if name != '' else name1, kernel_switch_threshold=kernel_switch_threshold) | |