AlexchIA's picture
Upload folder using huggingface_hub
452b173
raw
history blame contribute delete
19.7 kB
import numpy as np
import torch
import torch.nn as nn
import math
def quantize(x, scale, zero, maxq):
if maxq < 0:
return (x > scale / 2).float() * scale + (x < zero / 2).float() * zero
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
return scale * (q - zero)
class Quantizer(nn.Module):
def __init__(self, shape=1):
super(Quantizer, self).__init__()
self.register_buffer('maxq', torch.tensor(0))
self.register_buffer('scale', torch.zeros(shape))
self.register_buffer('zero', torch.zeros(shape))
def configure(
self,
bits, perchannel=False, sym=True,
mse=False, norm=2.4, grid=100, maxshrink=.8,
trits=False
):
self.maxq = torch.tensor(2 ** bits - 1)
self.perchannel = perchannel
self.sym = sym
self.mse = mse
self.norm = norm
self.grid = grid
self.maxshrink = maxshrink
if trits:
self.maxq = torch.tensor(-1)
def find_params(self, x, weight=False):
dev = x.device
self.maxq = self.maxq.to(dev)
shape = x.shape
if self.perchannel:
if weight:
x = x.flatten(1)
else:
if len(shape) == 4:
x = x.permute([1, 0, 2, 3])
x = x.flatten(1)
if len(shape) == 3:
x = x.reshape((-1, shape[-1])).t()
if len(shape) == 2:
x = x.t()
else:
x = x.flatten().unsqueeze(0)
tmp = torch.zeros(x.shape[0], device=dev)
xmin = torch.minimum(x.min(1)[0], tmp)
xmax = torch.maximum(x.max(1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
if self.maxq < 0:
self.scale = xmax
self.zero = xmin
else:
self.scale = (xmax - xmin) / self.maxq
if self.sym:
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
else:
self.zero = torch.round(-xmin / self.scale)
if self.mse:
best = torch.full([x.shape[0]], float('inf'), device=dev)
for i in range(int(self.maxshrink * self.grid)):
p = 1 - i / self.grid
xmin1 = p * xmin
xmax1 = p * xmax
scale1 = (xmax1 - xmin1) / self.maxq
zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero
q = quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq)
q -= x
q.abs_()
q.pow_(self.norm)
err = torch.sum(q, 1)
tmp = err < best
if torch.any(tmp):
best[tmp] = err[tmp]
self.scale[tmp] = scale1[tmp]
self.zero[tmp] = zero1[tmp]
if not self.perchannel:
if weight:
tmp = shape[0]
else:
tmp = shape[1] if len(shape) != 3 else shape[2]
self.scale = self.scale.repeat(tmp)
self.zero = self.zero.repeat(tmp)
if weight:
shape = [-1] + [1] * (len(shape) - 1)
self.scale = self.scale.reshape(shape)
self.zero = self.zero.reshape(shape)
return
if len(shape) == 4:
self.scale = self.scale.reshape((1, -1, 1, 1))
self.zero = self.zero.reshape((1, -1, 1, 1))
if len(shape) == 3:
self.scale = self.scale.reshape((1, 1, -1))
self.zero = self.zero.reshape((1, 1, -1))
if len(shape) == 2:
self.scale = self.scale.unsqueeze(0)
self.zero = self.zero.unsqueeze(0)
def quantize(self, x):
if self.ready():
return quantize(x, self.scale, self.zero, self.maxq)
return x
def enabled(self):
return self.maxq > 0
def ready(self):
return torch.all(self.scale != 0)
try:
import quant_cuda
except:
print('CUDA extension not installed.')
# Assumes layer is perfectly divisible into 256 * 256 blocks
class QuantLinear(nn.Module):
def __init__(self, bits, groupsize, infeatures, outfeatures, faster=False, kernel_switch_threshold=128):
super().__init__()
if bits not in [2,3,4,8]:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
self.infeatures = infeatures
self.outfeatures = outfeatures
self.bits = bits
if groupsize != -1 and groupsize < 32 and groupsize != int(math.pow(2,int(math.log2(groupsize)))):
raise NotImplementedError("groupsize supports powers of 2 greater than 32. (e.g. : 32,64,128,etc)")
groupsize = groupsize if groupsize != -1 else infeatures
self.groupsize = groupsize
self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures/groupsize),outfeatures // 256 * (bits * 8)), dtype=torch.int))
self.register_buffer('scales', torch.zeros((math.ceil(infeatures/groupsize),outfeatures)))
self.register_buffer('bias', torch.zeros(outfeatures))
self.register_buffer(
'qweight', torch.zeros((infeatures // 32 * bits, outfeatures), dtype=torch.int)
)
self.half_indim = self.infeatures // 2
self._initialized_quant_state = False
self.faster = faster
# kernel_switch_threshold is the cutoff input size after which matmul
# is performed by unpacking the weights and using torch.matmul
self.kernel_switch_threshold = kernel_switch_threshold
if isinstance(self.kernel_switch_threshold, bool):
self.kernel_switch_threshold = 128 if self.kernel_switch_threshold else None
if not self.kernel_switch_threshold is None:
# Buffers for bit shifting weight unpacking
if self.bits == 2:
self.register_buffer(
'wf1',
torch.tensor([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30], dtype=torch.int32).unsqueeze(0).unsqueeze(2),
persistent=False
)
self.register_buffer(
'wf2',
torch.tensor([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30], dtype=torch.int32).unsqueeze(0).unsqueeze(0),
persistent=False
)
elif self.bits == 3:
self.register_buffer('wf1', torch.tensor([
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0],
[0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31],
[0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0],
], dtype=torch.int32).reshape(1,3,12,1), persistent=False)
self.register_buffer('wf2', torch.tensor([
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0],
[0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31],
[0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0],
], dtype=torch.int32).reshape(1,1,3,12), persistent=False)
elif self.bits == 4:
self.register_buffer(
'wf1',
torch.tensor([0, 4, 8, 12, 16, 20, 24, 28], dtype=torch.int32).unsqueeze(0).unsqueeze(2),
persistent=False
)
self.register_buffer(
'wf2',
torch.tensor([0, 4, 8, 12, 16, 20, 24, 28], dtype=torch.int32).unsqueeze(0).unsqueeze(0),
persistent=False
)
elif self.bits == 8:
self.register_buffer(
'wf1',
torch.tensor([0, 8, 16, 24], dtype=torch.int32).unsqueeze(0).unsqueeze(2),
persistent=False
)
self.register_buffer(
'wf2',
torch.tensor([0, 8, 16, 24], dtype=torch.int32).unsqueeze(0).unsqueeze(0),
persistent=False
)
def pack(self, linear, scales, zeros):
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone()
if linear.bias is not None:
self.bias = linear.bias.clone()
intweight = []
for idx in range(self.infeatures):
g_idx = idx // self.groupsize
intweight.append(torch.round((linear.weight.data[:,idx] + scale_zeros[g_idx]) / self.scales[g_idx]).to(torch.int)[:,None])
intweight = torch.cat(intweight,dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
qweight = np.zeros(
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
)
i = 0
row = 0
while row < qweight.shape[0]:
if self.bits in [2,4,8]:
for j in range(i, i + (32//self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32//self.bits
row += 1
elif self.bits == 3:
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i))
i += 10
qweight[row] |= intweight[i] << 30
row += 1
qweight[row] |= (intweight[i] >> 2) & 1
i += 1
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i) + 1)
i += 10
qweight[row] |= intweight[i] << 31
row += 1
qweight[row] |= (intweight[i] >> 1) & 0x3
i += 1
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i) + 2)
i += 10
row += 1
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1;
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 256 * (self.bits * 8)), dtype=np.uint32)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [2,4,8]:
for j in range(i, i + (32//self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32//self.bits
col += 1
elif self.bits == 3:
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i))
i += 10
qzeros[:, col] |= zeros[:, i] << 30
col += 1
qzeros[:, col] |= (zeros[:, i] >> 2) & 1
i += 1
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1)
i += 10
qzeros[:, col] |= zeros[:, i] << 31
col += 1
qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3
i += 1
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2)
i += 10
col += 1
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x):
if not self._initialized_quant_state:
# Do we even have a bias? Check for at least one non-zero element.
if self.bias is not None and bool(torch.any(self.bias != 0)):
# Then make sure it's the right type.
self.bias.data = self.bias.data.to(torch.float32)
else:
self.bias = None
if not self.kernel_switch_threshold is None and (x.shape[0] * x.shape[1]) >= self.kernel_switch_threshold:
if self.bits == 2:
# Unpack 2bit weights
weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 16, -1), self.wf1).to(torch.int8)
torch.bitwise_and(weight, 0x00000003, out=weight)
weight = weight.reshape(-1, self.groupsize, weight.shape[2])
zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 16), self.wf2).to(torch.int8)
torch.bitwise_and(zeros, 0x00000003, out=zeros)
zeros = zeros + 1
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2])
scales = self.scales
scales = scales.reshape(-1, 1, scales.shape[-1])
weights = (scales * (weight - zeros))
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2])
x = torch.matmul(x, weights.to(x.dtype))
x = x + self.bias if self.bias is not None else x
return x
elif self.bits == 3:
# Unpack 3bit weights
weight = self.qweight.reshape(self.qweight.shape[0]//3, 3, 1, self.qweight.shape[1]).expand(-1, -1, 12, -1)
weight = (weight >> self.wf1)&0x7
weight[:,0,10] = (weight[:,0,10]&0x3) | ((weight[:,1,0] << 2)&0x4)
weight[:,1,11] = (weight[:,1,11]&0x1) | ((weight[:,2,0] << 1)&0x6)
weight = weight & 0x7
weight = torch.cat([weight[:,0,:11], weight[:,1,1:12], weight[:,2,1:11]], dim=1)
weight = weight.reshape(-1, self.groupsize, weight.shape[2])
zeros = self.qzeros.reshape(self.qzeros.shape[0], self.qzeros.shape[1]//3, 3, 1).expand(-1, -1, -1, 12)
zeros = (zeros >> self.wf2)
zeros[:,:,0,10] = (zeros[:,:,0,10]&0x3) | ((zeros[:,:,1,0] << 2)&0x4)
zeros[:,:,1,11] = (zeros[:,:,1,11]&0x1) | ((zeros[:,:,2,0] << 1)&0x6)
zeros = zeros & 0x7
zeros = torch.cat([zeros[:,:,0,:11], zeros[:,:,1,1:12], zeros[:,:,2,1:11]], dim=2)
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2])
zeros = zeros + 1
scales = self.scales
scales = scales.reshape(-1, 1, scales.shape[-1])
weights = (scales * (weight - zeros))
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2])
x = torch.matmul(x, weights.to(x.dtype))
x = x + self.bias if self.bias is not None else x
return x
elif self.bits == 4:
# Unpack 4bit weights
weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 8, -1), self.wf1).to(torch.int8)
torch.bitwise_and(weight, 0x0000000F, out=weight)
weight = weight.reshape(-1, self.groupsize, weight.shape[2])
zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 8), self.wf2).to(torch.int8)
torch.bitwise_and(zeros, 0x0000000F, out=zeros)
zeros = zeros + 1
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2])
scales = self.scales
scales = scales.reshape(-1, 1, scales.shape[-1])
weights = (scales * (weight - zeros))
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2])
x = torch.matmul(x, weights.to(x.dtype))
x = x + self.bias if self.bias is not None else x
return x
elif self.bits == 8:
# Unpack 8bit weights
weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 4, -1), self.wf1).to(torch.int8)
torch.bitwise_and(weight, 0x000000FF, out=weight)
weight = weight.reshape(-1, self.groupsize, weight.shape[2])
zeros = torch.bitwise_right_shift(torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 4), self.wf2).to(torch.int8)
torch.bitwise_and(zeros, 0x000000FF, out=zeros)
zeros = zeros + 1
zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2])
scales = self.scales
scales = scales.reshape(-1, 1, scales.shape[-1])
weights = (scales * (weight - zeros))
weights = weights.reshape(weights.shape[0] * weight.shape[1], weights.shape[2])
x = torch.matmul(x, weights.to(x.dtype))
x = x + self.bias if self.bias is not None else x
return x
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
outshape = list(x.shape)
outshape[-1] = self.outfeatures
x = x.reshape(-1, x.shape[-1])
if self.bias is None:
y = torch.zeros(x.shape[0], outshape[-1], dtype=torch.float32, device=x.device)
else:
y = self.bias.clone().repeat(x.shape[0], 1)
output_dtype = x.dtype
if self.faster:
x = x.half()
if self.bits == 2:
quant_cuda.vecquant2matmul_faster(x, self.qweight, y, self.scales, self.qzeros, self.groupsize, self.half_indim)
elif self.bits == 3:
quant_cuda.vecquant3matmul_faster(x, self.qweight, y, self.scales, self.qzeros, self.groupsize, self.half_indim)
elif self.bits == 4:
quant_cuda.vecquant4matmul_faster(x, self.qweight, y, self.scales, self.qzeros, self.groupsize, self.half_indim)
else:
raise NotImplementedError("Only 2,3,4 bits are supported.")
else:
x = x.float()
if self.bits == 2:
quant_cuda.vecquant2matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
elif self.bits == 3:
quant_cuda.vecquant3matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
elif self.bits == 4:
quant_cuda.vecquant4matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
elif self.bits == 8:
quant_cuda.vecquant8matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
y = y.to(output_dtype)
return y.reshape(outshape)
def make_quant(module, names, bits, groupsize, faster=False, name='', kernel_switch_threshold=128):
if isinstance(module, QuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
delattr(module, attr)
setattr(
module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, faster=faster, kernel_switch_threshold=kernel_switch_threshold)
)
for name1, child in module.named_children():
make_quant(child, names, bits, groupsize, faster, name + '.' + name1 if name != '' else name1, kernel_switch_threshold=kernel_switch_threshold)